關于高中數(shù)學知識點總結
在學習中,是不是經(jīng)常追著老師要知識點?知識點就是一些?嫉膬(nèi)容,或者考試經(jīng)常出題的地方。為了幫助大家掌握重要知識點,下面是小編收集整理的高中數(shù)學知識點總結,希望對大家有所幫助。
高中數(shù)學知識點總結1
有界性
設函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界。
單調(diào)性
設函數(shù)f(x)的定義域為D,區(qū)間I包含于D。如果對于區(qū)間上任意兩點x1及x2,當x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的。單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)。
奇偶性
設為一個實變量實值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù)。
幾何上,一個奇函數(shù)關于原點對稱,亦即其圖像在繞原點做180度旋轉后不會改變。
奇函數(shù)的.例子有x、sin(x)、sinh(x)和erf(x)。
設f(x)為一實變量實值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù)。
幾何上,一個偶函數(shù)關于y軸對稱,亦即其圖在對y軸映射后不會改變。
偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)。
偶函數(shù)不可能是個雙射映射。
連續(xù)性
在數(shù)學中,連續(xù)是函數(shù)的一種屬性。直觀上來說,連續(xù)的函數(shù)就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函數(shù)。如果輸入值的某種微小的變化會產(chǎn)生輸出值的一個突然的跳躍甚至無法定義,則這個函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性)。
高中數(shù)學知識點總結2
(一)導數(shù)第一定義
設函數(shù) y = f(x) 在點 x0 的某個領域內(nèi)有定義,當自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時,相應地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導,并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導數(shù)記為 f'(x0) ,即導數(shù)第一定義
(二)導數(shù)第二定義
設函數(shù) y = f(x) 在點 x0 的某個領域內(nèi)有定義,當自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時,相應地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當 △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導,并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導數(shù)記為 f'(x0) ,即 導數(shù)第二定義
(三)導函數(shù)與導數(shù)
如果函數(shù) y = f(x) 在開區(qū)間 I 內(nèi)每一點都可導,就稱函數(shù)f(x)在區(qū)間 I 內(nèi)可導。這時函數(shù) y = f(x) 對于區(qū)間 I 內(nèi)的每一個確定的 x 值,都對應著一個確定的導數(shù),這就構成一個新的函數(shù),稱這個函數(shù)為原來函數(shù) y = f(x) 的導函數(shù),記作 y', f'(x), dy/dx, df(x)/dx。導函數(shù)簡稱導數(shù)。
(四)單調(diào)性及其應用
1、利用導數(shù)研究多項式函數(shù)單調(diào)性的`一般步驟
(1)求f(x)
(2)確定f(x)在(a,b)內(nèi)符號 (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2、用導數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟
(1)求f(x)
(2)f(x)>0的解集與定義域的交集的對應區(qū)間為增區(qū)間; f(x)<0的解集與定義域的交集的對應區(qū)間為減區(qū)間
學習了導數(shù)基礎知識點,接下來可以學習高二數(shù)學中涉及到的導數(shù)應用的部分。
高中數(shù)學知識點總結3
一、平面的基本性質(zhì)與推論
1、平面的基本性質(zhì):
公理1如果一條直線的兩點在一個平面內(nèi),那么這條直線在這個平面內(nèi);
公理2過不在一條直線上的三點,有且只有一個平面;
公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。
2、空間點、直線、平面之間的位置關系:
直線與直線—平行、相交、異面;
直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);
平面與平面—平行、相交。
3、異面直線:
平面外一點A與平面一點B的連線和平面內(nèi)不經(jīng)過點B的直線是異面直線(判定);
所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);
兩條直線不是異面直線,則兩條直線平行或相交(反證);
異面直線不同在任何一個平面內(nèi)。
求異面直線所成的角:平移法,把異面問題轉化為相交直線的夾角
二、空間中的平行關系
1、直線與平面平行(核心)
定義:直線和平面沒有公共點
判定:不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)
性質(zhì):一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行
2、平面與平面平行
定義:兩個平面沒有公共點
判定:一個平面內(nèi)有兩條相交直線平行于另一個平面,則這兩個平面平行
性質(zhì):兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。
3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線
三、空間中的.垂直關系
1、直線與平面垂直
定義:直線與平面內(nèi)任意一條直線都垂直
判定:如果一條直線與一個平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直
性質(zhì):垂直于同一直線的兩平面平行
推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面
直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度
2、平面與平面垂直
定義:兩個平面所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內(nèi)分別作垂直于棱的兩條射線所成的角)
判定:一個平面過另一個平面的垂線,則這兩個平面垂直
性質(zhì):兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直
高中數(shù)學知識點總結4
一、求導數(shù)的方法
。1)基本求導公式
。2)導數(shù)的四則運算
。3)復合函數(shù)的導數(shù)
設在點x處可導,y=在點處可導,則復合函數(shù)在點x處可導,且即
二、關于極限
1、數(shù)列的極限:
粗略地說,就是當數(shù)列的項n無限增大時,數(shù)列的項無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:
2、函數(shù)的極限:
當自變量x無限趨近于常數(shù)時,如果函數(shù)無限趨近于一個常數(shù),就說當x趨近于時,函數(shù)的極限是,記作
三、導數(shù)的概念
1、在處的導數(shù)。
2、在的導數(shù)。
3、函數(shù)在點處的導數(shù)的幾何意義:
函數(shù)在點處的導數(shù)是曲線在處的切線的斜率,
即k=,相應的'切線方程是
注:函數(shù)的導函數(shù)在時的函數(shù)值,就是在處的導數(shù)。
例、若=2,則=()A—1B—2C1D
四、導數(shù)的綜合運用
(一)曲線的切線
函數(shù)y=f(x)在點處的導數(shù),就是曲線y=(x)在點處的切線的斜率。由此,可以利用導數(shù)求曲線的切線方程。具體求法分兩步:
。1)求出函數(shù)y=f(x)在點處的導數(shù),即曲線y=f(x)。
。2)在已知切點坐標和切線斜率的條件下,求得切線方程為x。
高中數(shù)學知識點總結5
軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
一、求動點的軌跡方程的基本步驟。
1、建立適當?shù)淖鴺讼,設出動點M的坐標;
2、寫出點M的集合;
3、列出方程=0;
4、化簡方程為最簡形式;
5、檢驗。
二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。
1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
3、相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。
4、參數(shù)法:當動點坐標x、y之間的'直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動點軌跡方程的一般步驟:
、俳ㄏ怠⑦m當?shù)淖鴺讼担?/p>
、谠O點——設軌跡上的任一點P(x,y);
、哿惺健谐鰟狱cp所滿足的關系式;
、艽鷵Q——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;
、葑C明——證明所求方程即為符合條件的動點軌跡方程。
【高中數(shù)學知識點總結】相關文章:
高中數(shù)學知識點總結11-01
高中數(shù)學知識點全總結10-20
高中數(shù)學必修二知識點總結集合09-26
高中數(shù)學學科知識點整合08-28
高中數(shù)學總結09-25
月考總結高中數(shù)學07-17
高中數(shù)學月考總結06-18
高中數(shù)學教研總結10-13
語文知識點總結12-23
物理知識點總結05-09