国产真实乱子伦精品,国产精品100页,美女网站色免费,国产白嫩美女免费观看,欧美精品亚洲,欧美韩国xxx,欧美性猛交xxxxxxxx软件

初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)

時(shí)間:2022-04-25 08:28:35 總結(jié) 我要投稿

初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)

  在平凡的學(xué)習(xí)生活中,大家最不陌生的就是知識(shí)點(diǎn)吧!知識(shí)點(diǎn)就是一些?嫉膬(nèi)容,或者考試經(jīng)常出題的地方。為了幫助大家更高效的學(xué)習(xí),下面是小編精心整理的初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。

初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)

  初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)1

  一、平行四邊形的定義、性質(zhì)及判定

  1、兩組對(duì)邊平行的四邊形是平行四邊形。

  2、性質(zhì):

  (1)平行四邊形的對(duì)邊相等且平行

  (2)平行四邊形的對(duì)角相等,鄰角互補(bǔ)

  (3)平行四邊形的對(duì)角線互相平分

  3、判定:

  (1)兩組對(duì)邊分別平行的四邊形是平行四邊形

  (2)兩組對(duì)邊分別相等的四邊形是平行四邊形

  (3)一組對(duì)邊平行且相等的四邊形是平行四邊形

  (4)兩組對(duì)角分別相等的四邊形是平行四邊形

  (5)對(duì)角線互相平分的四邊形是平行四邊形

  4、對(duì)稱性:平行四邊形是中心對(duì)稱圖形

  二、矩形的定義、性質(zhì)及判定

  1、定義:有一個(gè)角是直角的平行四邊形叫做矩形

  2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對(duì)角線相等

  3、判定:

  (1)有一個(gè)角是直角的平行四邊形叫做矩形

  (2)有三個(gè)角是直角的四邊形是矩形

  (3)兩條對(duì)角線相等的平行四邊形是矩形

  4、對(duì)稱性:矩形是軸對(duì)稱圖形也是中心對(duì)稱圖形。

  三、菱形的定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等的平行四邊形叫做菱形

  (1)菱形的四條邊都相等

  (2)菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

  (3)菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形

  (4)菱形的面積等于兩條對(duì)角線長的積的一半

  2、s菱=爭6(n、6分別為對(duì)角線長)

  3、判定:

  (1)有一組鄰邊相等的平行四邊形叫做菱形

  (2)四條邊都相等的四邊形是菱形

  (3)對(duì)角線互相垂直的平行四邊形是菱形

  4、對(duì)稱性:菱形是軸對(duì)稱圖形也是中心對(duì)稱圖形

  初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)2

  1、不在同一直線上的三點(diǎn)確定一個(gè)圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  4、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7、同圓或等圓的半徑相等

  8、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

  11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  12、①直線L和⊙O相交d

 、谥本L和⊙O相切d=r

  ③直線L和⊙O相離d>r

  13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑

  15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  16、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  17、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

  18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角

  19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  20、①兩圓外離d>R+r

  ②兩圓外切d=R+r

 、蹆蓤A相交R-rr)

  ④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

  初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)3

  1.有理數(shù):

 。1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負(fù)數(shù);—a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);

  (2)有理數(shù)的分類:① ②

  2.數(shù)軸:

  數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線。

  3.相反數(shù):

 。1)只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;

 。2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。

  4.絕對(duì)值:

 。1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的'相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;

 。2)絕對(duì)值可表示為:或;絕對(duì)值的問題經(jīng)常分類討論;

  5.有理數(shù)比大小:

 。1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;

 。2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0;

  (3)正數(shù)大于一切負(fù)數(shù);

 。4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小

 。5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;

 。6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。

  6.互為倒數(shù):

  乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負(fù)倒數(shù)。

  7.有理數(shù)加法法則:

  (1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;

 。2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;

 。3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。

  初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)4

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個(gè)規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

  ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)5

  1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  2、三角形的分類

  3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4、高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。

  5、中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。

  6、角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。

  7、高線、中線、角平分線的意義和做法

  8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。

  9、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°

  推論1直角三角形的兩個(gè)銳角互余

  推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和

  推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半

  10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

  11、三角形外角的性質(zhì)

  (1)頂點(diǎn)是三角形的一個(gè)頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

  (2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和;

  (3)三角形的一個(gè)外角大于與它不相鄰的任一內(nèi)角;

  (4)三角形的外角和是360°。

  初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)6

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。

  由圓的意義可知:

  圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長的點(diǎn)都在圓上。

  就是說:圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡稱弧。

  圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)。恍∮诎雸A的弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個(gè)圓叫同心圓。

  能夠重合的兩個(gè)圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過三點(diǎn)的圓

  l、過三點(diǎn)的圓

  過三點(diǎn)的圓的作法:利用中垂線找圓心

  定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。

  經(jīng)過三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。

  2、反證法

  反證法的三個(gè)步驟:

 、偌僭O(shè)命題的結(jié)論不成立;

 、趶倪@個(gè)假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;

 、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。

  例如:求證三角形中最多只有一個(gè)角是鈍角。

  證明:設(shè)有兩個(gè)以上是鈍角

  則兩個(gè)鈍角之和>180°

  與三角形內(nèi)角和等于180°矛盾。

  ∴不可能有二個(gè)以上是鈍角。

  即最多只能有一個(gè)是鈍角。

  三、垂直于弦的直徑

  圓是軸對(duì)稱圖形,經(jīng)過圓心的每一條直線都是它的對(duì)稱軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。

  弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧。

  平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。

  實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來的圖形重合。

  頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距相等。

  推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。

  五、圓周角

  頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。

  推理2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。

  推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

  初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)7

  一、角的定義

  “靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。

  “動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

  如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

  二、角的換算:

  1周角=2平角=4直角=360°;

  1平角=2直角=180°;

  1直角=90°;

  1度=60分=3600秒(即:1°=60′=3600″);

  1分=60秒(即:1′=60″).

  三、余角、補(bǔ)角的概念和性質(zhì):

  概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。

  如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。

  說明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒有位置關(guān)系。

  性質(zhì):同角(或等角)的余角相等;

  同角(或等角)的補(bǔ)角相等。

  四、角的比較方法:

  角的大小比較,有兩種方法:

  (1)度量法(利用量角器);

  (2)疊合法(利用圓規(guī)和直尺)。

  五、角平分線:

  從一個(gè)角的頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。

  常見考法

  (1)考查與時(shí)鐘有關(guān)的問題;(2)角的計(jì)算與度量。

  誤區(qū)提醒

  角的度、分、秒單位的換算是60進(jìn)制,而不是10進(jìn)制,換算時(shí)易受10進(jìn)制影響而出錯(cuò)。

  初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)8

  1、變量與常量

  在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

  一般地,在某一變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有確定的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù)。

  2、函數(shù)解析式

  用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

  (1)解析法

  兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

  4、由函數(shù)解析式畫其圖像的一般步驟

  (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

  (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

  (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。

  初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)9

  1、知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)

  2、知識(shí)要點(diǎn)

  (1)在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。

 。2)在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個(gè)公共點(diǎn),稱這兩條直線相交;如果兩條直線沒有公共點(diǎn),稱這兩條直線平行。

 。3)兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是

  鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì):鄰補(bǔ)角互補(bǔ)。如圖1所示,與互為鄰補(bǔ)角,

  與互為鄰補(bǔ)角。+=180°;+=180°;+=180°;+=180°。

  3、兩條直線相交所構(gòu)成的四個(gè)角中,一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長線,這樣的兩個(gè)角互為對(duì)頂角。對(duì)頂角的性質(zhì):對(duì)頂角相等。如圖1所示,與互為對(duì)頂角。=; =。

  4、兩條直線相交所成的角中,如果有一個(gè)是直角或90°時(shí),稱這兩條直線互相垂直,

  其中一條叫做另一條的垂線。如圖2所示,當(dāng)=90°時(shí),⊥。

  垂線的性質(zhì):

  性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。

  性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

  性質(zhì)3:如圖2所示,當(dāng)a⊥b時(shí),====90°。

  點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度叫點(diǎn)到直線的距離。

  5、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角基本特征:

  在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣的兩個(gè)角叫同位角。圖3中,共有對(duì)同位角:與是同位角;與是同位角;與是同位角;與是同位角。

  在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個(gè)角叫內(nèi)錯(cuò)角。圖3中,共有對(duì)內(nèi)錯(cuò)角:與是內(nèi)錯(cuò)角;與是內(nèi)錯(cuò)角。

  在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個(gè)角叫同旁內(nèi)角。圖3中,共有對(duì)同旁內(nèi)角:與是同旁內(nèi)角;與是同旁內(nèi)角。

  初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)10

  1、實(shí)數(shù)的分類

  (1)按定義分類:

 。2)按性質(zhì)符號(hào)分類:

  注:0既不是正數(shù)也不是負(fù)數(shù).

  2、實(shí)數(shù)的相關(guān)概念

 。1)相反數(shù)

  ①代數(shù)意義:只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù).0的相反數(shù)是0.

 、趲缀我饬x:在數(shù)軸上原點(diǎn)的兩側(cè),與原點(diǎn)距離相等的兩個(gè)點(diǎn)表示的兩個(gè)數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱.

  ③互為相反數(shù)的兩個(gè)數(shù)之和等于0.a、b互為相反數(shù)a+b=0.

 。2)絕對(duì)值|a|≥0.

 。3)倒數(shù)(1)0沒有倒數(shù)(2)乘積是1的兩個(gè)數(shù)互為倒數(shù).a、b互為倒數(shù).

 。4)平方根

 、偃绻粋(gè)數(shù)的平方等于a,這個(gè)數(shù)就叫做a的平方根.一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);0有一個(gè)平方根,它是0本身;負(fù)數(shù)沒有平方根.a(a≥0)的平方根記作.

 、谝粋(gè)正數(shù)a的正的平方根,叫做a的算術(shù)平方根.a(a≥0)的算術(shù)平方根記作.

 。5)立方根

  如果x3=a,那么x叫做a的立方根.一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零.

  3、實(shí)數(shù)與數(shù)軸

  數(shù)軸定義:規(guī)定了原點(diǎn),正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.

  4、實(shí)數(shù)大小的比較

  (1)對(duì)于數(shù)軸上的任意兩個(gè)點(diǎn),靠右邊的點(diǎn)所表示的數(shù)較大.

  (2)正數(shù)都大于0,負(fù)數(shù)都小于0,兩個(gè)正數(shù),絕對(duì)值較大的那個(gè)正數(shù)大;兩個(gè)負(fù)數(shù);絕對(duì)值大的反而小.

  (3)無理數(shù)的比較大。

【初中數(shù)學(xué)必考的知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

蘇教版小學(xué)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-24

小學(xué)生的數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-24

新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-24

初中數(shù)學(xué)教研組總結(jié)(精選7篇)04-21

數(shù)學(xué)分析第六章知識(shí)點(diǎn)總結(jié)04-24

初中數(shù)學(xué)小論文 -論文01-01

防詐騙知識(shí)點(diǎn)總結(jié)04-22

疫情防護(hù)知識(shí)點(diǎn)總結(jié)04-20

初中數(shù)學(xué)課程方案04-22

雙減背景下初中數(shù)學(xué)教師總結(jié)(精選5篇)04-22