国产真实乱子伦精品,国产精品100页,美女网站色免费,国产白嫩美女免费观看,欧美精品亚洲,欧美韩国xxx,欧美性猛交xxxxxxxx软件

數(shù)學分析一知識點總結

時間:2024-09-30 04:17:26 總結 我要投稿
  • 相關推薦

數(shù)學分析一知識點總結

  漫長的學習生涯中,看到知識點,都是先收藏再說吧!知識點在教育實踐中,是指對某一個知識的泛稱。哪些才是我們真正需要的知識點呢?以下是小編為大家整理的數(shù)學分析一知識點總結,希望對大家有所幫助。

數(shù)學分析一知識點總結

  數(shù)學分析一知識點總結1

  圓的方程

  1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

  2、圓的方程

 。1)標準方程,圓心,半徑為r;

 。2)一般方程

  當時,方程表示圓,此時圓心為,半徑為

  當時,表示一個點;當時,方程不表示任何圖形。

 。3)求圓方程的方法:

  一般都采用待定系數(shù)法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

  另外要注意多利用圓的幾何性質:如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。

  高中數(shù)學必修二知識點總結:直線與圓的位置關系:

  直線與圓的位置關系有相離,相切,相交三種情況:

 。1)設直線,圓,圓心到l的距離為,則有;;

 。2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

 。3)過圓上一點的切線方程:圓(x—a)2+(y—b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0—a)(x—a)+(y0—b)(y—b)=r2

  4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  設圓,

  兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  當時兩圓外離,此時有公切線四條;

  當時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;

  當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;

  當時,兩圓內(nèi)含;當時,為同心圓。

  注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

  4、空間點、直線、平面的位置關系

  公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi)。

  應用:判斷直線是否在平面內(nèi)

  用符號語言表示公理1:

  公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

  符號:平面α和β相交,交線是a,記作α∩β=a。

  符號語言:

  公理2的作用:

 、偎桥卸▋蓚平面相交的方法。

 、谒f明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。

 、鬯梢耘袛帱c在直線上,即證若干個點共線的重要依據(jù)。

  公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面。

  推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

  公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)

  公理4:平行于同一條直線的兩條直線互相平行

  空間直線與直線之間的位置關系

 、佼惷嬷本定義:不同在任何一個平面內(nèi)的兩條直線

 、诋惷嬷本性質:既不平行,又不相交。

 、郛惷嬷本判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

 、墚惷嬷本所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

  求異面直線所成角步驟:

  A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來求角

 。7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。

 。8)空間直線與平面之間的位置關系

  直線在平面內(nèi)——有無數(shù)個公共點。

  三種位置關系的符號表示:aαa∩α=Aa‖α

 。9)平面與平面之間的位置關系:平行——沒有公共點;α‖β

  相交——有一條公共直線。α∩β=b

  5、空間中的平行問題

 。1)直線與平面平行的判定及其性質

  線面平行的.判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

  線線平行線面平行

  線面平行的性質定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

  那么這條直線和交線平行。線面平行線線平行

 。2)平面與平面平行的判定及其性質

  兩個平面平行的判定定理

 。1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

 。ň面平行→面面平行),

 。2)如果在兩個平面內(nèi),各有兩組相交直線對應平行,那么這兩個平面平行。

 。ň線平行→面面平行),

 。3)垂直于同一條直線的兩個平面平行,

  兩個平面平行的性質定理

  (1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)

 。2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

  7、空間中的垂直問題

 。1)線線、面面、線面垂直的定義

 、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

 、诰面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。

 、燮矫婧推矫娲怪保喝绻麅蓚平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

 。2)垂直關系的判定和性質定理

 、倬面垂直判定定理和性質定理

  判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。

  性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

  ②面面垂直的判定定理和性質定理

  判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

  性質定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。

  9、空間角問題

 。1)直線與直線所成的角

 、賰善叫兄本所成的角:規(guī)定為。

 、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

 、蹆蓷l異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

 。2)直線和平面所成的角

 、倨矫娴钠叫芯與平面所成的角:規(guī)定為。②平面的垂線與平面所成的角:規(guī)定為。

 、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

  在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,

  在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。

 。3)二面角和二面角的平面角

 、俣娼堑亩x:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

 、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

 、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼。

  兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

 、芮蠖娼堑姆椒

  定義法:在棱上選擇有關點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

  垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

  數(shù)學分析一知識點總結2

  1、混淆命題的否定與否命題

  命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論。

  2、忽視集合元素的三性致誤

  集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。

  3、判斷函數(shù)奇偶性忽略定義域致誤

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù)。

  4、函數(shù)零點定理使用不當致誤

  如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,但f(a)f(b)>0時,不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點。函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點問題時要注意這個問題。

  5、函數(shù)的單調區(qū)間理解不準致誤

  在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學會從函數(shù)圖像上去分析問題、尋找解決問題的方法。對于函數(shù)的幾個不同的單調遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調遞增(減)區(qū)間即可。

  6、三角函數(shù)的單調性判斷致誤

  對于函數(shù)y=Asin(ωx+φ)的單調性,當ω>0時,由于內(nèi)層函數(shù)u=ωx+φ是單調遞增的,所以該函數(shù)的單調性和y=sinx的單調性相同,故可完全按照函數(shù)y=sinx的單調區(qū)間解決;但當ω<0時,內(nèi)層函數(shù)u=ωx+φ是單調遞減的,此時該函數(shù)的單調性和函數(shù)y=sinx的單調性相反,就不能再按照函數(shù)y=sinx的單調性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對于帶有絕對值的三角函數(shù)應該根據(jù)圖像,從直觀上進行判斷。

  7、向量夾角范圍不清致誤

  解題時要全面考慮問題。數(shù)學試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。

  8、忽視零向量致誤

  零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視。

  9、對數(shù)列的定義、性質理解錯誤

  等差數(shù)列的前n項和在公差不為零時是關于n的常數(shù)項為零的二次函數(shù);一般地,有結論“若數(shù)列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m—Sm,S3m—S2m(m∈Nx)是等差數(shù)列。

  10、an與Sn關系不清致誤

  在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在下列關系:an=S1,n=1,Sn—Sn—1,n≥2。這個關系對任意數(shù)列都是成立的,但要注意的是這個關系式是分段的,在n=1和n≥2時這個關系式具有完全不同的`表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關系式時要牢牢記住其“分段”的特點。

  11、錯位相減求和項處理不當致誤

  錯位相減求和法的適用條件:數(shù)列是由一個等差數(shù)列和一個等比數(shù)列對應項的乘積所組成的,求其前n項和;痉椒ㄊ窃O這個和式為Sn,在這個和式兩端同時乘以等比數(shù)列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉化為以求一個等比數(shù)列的前n項和或前n—1項和為主的求和問題。這里最容易出現(xiàn)問題的就是錯位相減后對剩余項的處理。

  12、不等式性質應用不當致誤

  在使用不等式的基本性質進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數(shù)式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質成立的前提條件就會出現(xiàn)錯誤。

  13、數(shù)列中的最值錯誤

  數(shù)列問題中其通項公式、前n項和公式都是關于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點認識和理解數(shù)列問題。數(shù)列的通項an與前n項和Sn的關系是高考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一。在關于正整數(shù)n的二次函數(shù)中其取最值的點要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸的遠近而定。

  14、不等式恒成立問題致誤

  解決不等式恒成立問題的常規(guī)求法是:借助相應函數(shù)的單調性求解,其中的主要方法有數(shù)形結合法、變量分離法、主元法。通過最值產(chǎn)生結論。應注意恒成立與存在性問題的區(qū)別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)—g(x)≤0的恒成立問題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應特別注意兩函數(shù)中的最大值與最小值的關系。

  15、忽視三視圖中的實、虛線致誤

  三視圖是根據(jù)正投影原理進行繪制,嚴格按照“長對正,高平齊,寬相等”的規(guī)則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽。

  16、面積體積計算轉化不靈活致誤

  面積、體積的計算既需要學生有扎實的基礎知識,又要用到一些重要的思想方法,是高考考查的重要題型。因此要熟練掌握以下幾種常用的思想方法。

 。1)還臺為錐的思想:這是處理臺體時常用的思想方法。

 。2)割補法:求不規(guī)則圖形面積或幾何體體積時常用。

 。3)等積變換法:充分利用三棱錐的任意一個面都可作為底面的特點,靈活求解三棱錐的體積。

 。4)截面法:尤其是關于旋轉體及與旋轉體有關的組合問題,常畫出軸截面進行分析求解。

  17、忽視基本不等式應用條件致誤

  利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時,務必注意a,b為正數(shù)(或a,b非負),ab或a+b其中之一應是定值,特別要注意等號成立的條件。對形如y=ax+bx(a,b>0)的函數(shù),在應用基本不等式求函數(shù)最值時,一定要注意ax,bx的符號,必要時要進行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號能否取到。

  數(shù)學分析一知識點總結3

  1.數(shù)列的定義

  按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.

  (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

  (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的.數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數(shù)列:-1,1,-1,1,….

  (4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當于f(n)中的n.

  (5)次序對于數(shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

  2.數(shù)列的分類

  (1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.

  (2)按照項與項之間的大小關系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.

  3.數(shù)列的通項公式

  數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,

  這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關系不都能用解析式表達出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非.如:數(shù)列1,2,3,4。

  數(shù)學分析一知識點總結4

  一、角的定義

  “靜態(tài)”概念:有公共端點的兩條射線組成的圖形叫做角。

  “動態(tài)”概念:角可以看作是一條射線繞其端點從一個位置旋轉到另一個位置所形成的圖形。

  如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

  二、角的換算:

  1周角=2平角=4直角=360°;

  1平角=2直角=180°;

  1直角=90°;

  1度=60分=3600秒(即:1°=60′=3600″);

  1分=60秒(即:1′=60″).

  三、余角、補角的概念和性質:

  概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補角。

  如果兩個角的和是一個直角,那么這兩個角叫做互為余角。

  說明:互補、互余是指兩個角的數(shù)量關系,沒有位置關系。

  性質:同角(或等角)的余角相等;

  同角(或等角)的補角相等。

  四、角的比較方法:

  角的'大小比較,有兩種方法:

  (1)度量法(利用量角器);

  (2)疊合法(利用圓規(guī)和直尺)。

  五、角平分線:

  從一個角的頂點引出的一條射線。把這個角分成相等的兩部分,這條射線叫做這個角的平分線。

  常見考法

  (1)考查與時鐘有關的問題;

  (2)角的計算與度量。

  誤區(qū)提醒

  角的度、分、秒單位的換算是60進制,而不是10進制,換算時易受10進制影響而出錯。

  數(shù)學分析一知識點總結5

  1、正數(shù)和負數(shù)的有關概念

  (1)正數(shù):比0大的數(shù)叫做正數(shù);

  負數(shù):比0小的數(shù)叫做負數(shù);

  0既不是正數(shù),也不是負數(shù)。

  (2)正數(shù)和負數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關數(shù)軸

  (1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直線。

  (2)所有有理數(shù)都可以用數(shù)軸上的點來表示,但數(shù)軸上的點不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點在原點的右側,表示負數(shù)的點在原點的左側。

  (2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負數(shù),負數(shù)的相反數(shù)是正數(shù)。

  (3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負數(shù)。

  4、任何數(shù)的絕對值是非負數(shù)。

  最小的正整數(shù)是1,最大的負整數(shù)是-1。

  5、利用絕對值比較大小

  兩個正數(shù)比較:絕對值大的那個數(shù)大;

  兩個負數(shù)比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數(shù)加法

  (1)符號相同的兩數(shù)相加:和的符號與兩個加數(shù)的符號一致,和的絕對值等于兩個加數(shù)絕對值之和.

  (2)符號相反的兩數(shù)相加:當兩個加數(shù)絕對值不等時,和的符號與絕對值較大的'加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零.

  (3)一個數(shù)同零相加,仍得這個數(shù).

  加法的交換律:a+b=b+a

  加法的結合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:

  減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運算統(tǒng)一為最簡的形式,負數(shù)前面的加號可以省略不寫.

  例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12-25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”

  9、有理數(shù)的乘法

  兩個數(shù)相乘,同號得正,異號得負,再把絕對值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號第二步:絕對值相乘

  10、乘積的符號的確定

  幾個有理數(shù)相乘,因數(shù)都不為0時,積的符號由負因數(shù)的個數(shù)確定:當負因數(shù)有奇數(shù)個時,積為負;

  當負因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。

  11、倒數(shù):

  乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)

  倒數(shù)是本身的只有1和-1。

  數(shù)學分析一知識點總結6

  等式的性質:

  不等式的性質可分為不等式基本性質和不等式運算性質兩部分。

  不等式基本性質有:

  (1)a>bb

  (2)a>b,b>ca>c(傳遞性)

  (3)a>ba+c>b+c(c∈R)

  (4)c>0時,a>bac>bc

  c<0時,a>bac

  運算性質有:

  (1)a>b,c>da+c>b+d。

  (2)a>b>0,c>d>0ac>bd。

  (3)a>b>0an>bn(n∈N,n>1)。

  (4)a>b>0>(n∈N,n>1)。

  應注意,上述性質中,條件與結論的邏輯關系有兩種:“”和“”即推出關系和等價關系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的'等價變換。因此,要正確理解和應用不等式性質。

 、陉P于不等式的性質的考察,主要有以下三類問題:

  (1)根據(jù)給定的不等式條件,利用不等式的性質,判斷不等式能否成立。

  (2)利用不等式的性質及實數(shù)的性質,函數(shù)性質,判斷實數(shù)值的大小。

  (3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關系。

  數(shù)學分析一知識點總結7

  任一A,B,記做AB

  AB,BA,A=B

  AB={|A|,且|B|}

  AB={|A|,或|B|}

  Card(AB)=card(A)+card(B)-card(AB)

  (1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

  (2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1.集合元素具有①確定性;②互異性;③無序性

  2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

  (3)集合的.運算

 、貯∩(B∪C)=(A∩B)∪(A∩C)

 、贑u(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

  (4)集合的性質

  n元集合的字集數(shù):2n

  真子集數(shù):2n-1;

  非空真子集數(shù):2n-2

  數(shù)學分析一知識點總結8

  1、集合的概念

  集合是數(shù)學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。

  集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。

  2、元素與集合的關系元素與集合的關系有屬于和不屬于兩種:

  元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

  3、集合中元素的`特性

  (1)確定性:設A是一個給定的集合,_是某一具體對象,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

  (2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。

  (3)無序性:集合與其中元素的排列次序無關,如集合{a,b,c}與集合{c,b,a}是同一個集合。

  4、集合的分類

  集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:

  有限集:含有有限個元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。

  無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。

  特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{|R|+1=0}。

  5、特定的集合的表示

  為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。

  (1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記做N。

  (2)非負整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。

  (3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。

  (4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。

  (5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做R。

  數(shù)學分析一知識點總結9

  分層抽樣

  先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類型或層次,然后再在各個類型或層次中采用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構成總體的樣本。

  兩種方法

  1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

  2.分層抽樣是把異質性較強的總體分成一個個同質性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。

  分層標準

  (1)以調查所要分析和研究的主要變量或相關的變量作為分層的標準。

  (2)以保證各層內(nèi)部同質性強、各層之間異質性強、突出總體內(nèi)在結構的變量作為分層變量。

  (3)以那些有明顯分層區(qū)分的變量作為分層變量。

  分層的比例問題

  (1)按比例分層抽樣:根據(jù)各種類型或層次中的單位數(shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。

  (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進行加權處理,調整樣本中各層的比例,使數(shù)據(jù)恢復到總體中各層實際的.比例結構。

  (1)定義:

  對于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點。

  (2)函數(shù)的零點與相應方程的根、函數(shù)的圖象與x軸交點間的關系:

  方程f(x)=0有實數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點?函數(shù)y=f(x)有零點。

  (3)函數(shù)零點的判定(零點存在性定理):

  如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。

  二二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點的關系

  三二分法

  對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法。

  1、函數(shù)的零點不是點:

  函數(shù)y=f(x)的零點就是方程f(x)=0的實數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點的橫坐標,所以函數(shù)的零點是一個數(shù),而不是一個點.在寫函數(shù)零點時,所寫的一定是一個數(shù)字,而不是一個坐標。

  2、對函數(shù)零點存在的判斷中,必須強調:

  (1)、f(x)在[a,b]上連續(xù);

  (2)、f(a)·f(b)<0;

  (3)、在(a,b)內(nèi)存在零點。

  這是零點存在的一個充分條件,但不必要。

  3、對于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個零點之間的所有函數(shù)值保持同號。

  利用函數(shù)零點的存在性定理判斷零點所在的區(qū)間時,首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0.若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點。

  四判斷函數(shù)零點個數(shù)的常用方法

  1、解方程法:

  令f(x)=0,如果能求出解,則有幾個解就有幾個零點。

  2、零點存在性定理法:

  利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結合函數(shù)的圖象與性質(如單調性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個零點。

  3、數(shù)形結合法:

  轉化為兩個函數(shù)的圖象的交點個數(shù)問題.先畫出兩個函數(shù)的圖象,看其交點的個數(shù),其中交點的個數(shù),就是函數(shù)零點的個數(shù)。

  已知函數(shù)有零點(方程有根)求參數(shù)取值常用的方法

  1、直接法:

  直接根據(jù)題設條件構建關于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。

  2、分離參數(shù)法:

  先將參數(shù)分離,轉化成求函數(shù)值域問題加以解決。

  3、數(shù)形結合法:

  先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解。

  數(shù)學分析一知識點總結10

  1、函數(shù)零點的概念:

  對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

  2、函數(shù)零點的意義:

  函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點。

  3、函數(shù)零點的求法:

  求函數(shù)的零點:

 。1)(代數(shù)法)求方程的.實數(shù)根;

 。2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質找出零點。

  4、二次函數(shù)的零點:

  二次函數(shù)。

  1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點。

  2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點。

  3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點。

  數(shù)學分析一知識點總結11

  公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線上的所有的點都在這個平面內(nèi)。

  公理2:如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。

  公理3:過不在同一條直線上的.三個點,有且只有一個平面。

  推論1:經(jīng)過一條直線和這條直線外一點,有且只有一個平面。

  推論2:經(jīng)過兩條相交直線,有且只有一個平面。

  推論3:經(jīng)過兩條平行直線,有且只有一個平面。

  公理4:平行于同一條直線的兩條直線互相平行。

  等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。

  數(shù)學分析一知識點總結12

  空間兩條直線只有三種位置關系:平行、相交、異面

  按是否共面可分為兩類:

  (1)共面:平行、相交

 。2)異面:

  異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp?臻g向量法

  兩異面直線間距離:公垂線段(有且只有一條)esp?臻g向量法

  若從有無公共點的角度看可分為兩類:

 。1)有且僅有一個公共點——相交直線;

 。2)沒有公共點——平行或異面

  直線和平面的位置關系:

  直線和平面只有三種位置關系:在平面內(nèi)、與平面相交、與平面平行

 、僦本在平面內(nèi)——有無數(shù)個公共點

 、谥本和平面相交——有且只有一個公共點

  直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。

  空間向量法(找平面的法向量)

  規(guī)定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的`角為0°角

  由此得直線和平面所成角的取值范圍為[0°,90°]

  最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

  三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

  直線和平面垂直

  直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。

  直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

  直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。

  直線和平面平行的性質定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

  數(shù)學分析一知識點總結13

  簡單隨機抽樣的定義:

  一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。

  簡單隨機抽樣的特點:

 。1)用簡單隨機抽樣從含有N個個體的總體中抽取一個容量為n的'樣本時,每次抽取一個個體時任一個體被抽到的概率為;在整個抽樣過程中各個個體被抽到的概率為

 。2)簡單隨機抽樣的特點是,逐個抽取,且各個個體被抽到的概率相等;

 。3)簡單隨機抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復雜抽樣方法的基礎。

 。4)簡單隨機抽樣是不放回抽樣;它是逐個地進行抽;它是一種等概率抽樣

  簡單抽樣常用方法:

 。1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進行均勻攪拌,抽簽時每次從中抽一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數(shù)不多時優(yōu)點:抽簽法簡便易行,當總體的個體數(shù)不太多時適宜采用抽簽法。

 。2)隨機數(shù)表法:隨機數(shù)表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數(shù)字;第三步,獲取樣本號碼概率。

【數(shù)學分析一知識點總結】相關文章:

數(shù)學分析最全知識點總結12-25

高一函數(shù)知識點總結07-12

高一政治必修一知識點總結05-11

人教版高一英語知識點總結06-30

初一語文知識點總結05-16

高一化學知識點總結09-04

人教版生物必修一知識點總結10-11

初一數(shù)學的知識點總結10-26

高一物理知識點總結07-28

人教版高一英語必修一知識點總結09-12