湘教版數(shù)學知識點總結
在年少學習的日子里,大家最不陌生的就是知識點吧!知識點是傳遞信息的基本單位,知識點對提高學習導航具有重要的作用。哪些知識點能夠真正幫助到我們呢?以下是小編精心整理的湘教版數(shù)學知識點總結,僅供參考,大家一起來看看吧。
數(shù)學知識點總結1
平面直角坐標系:
在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:
、僭谕黄矫
、趦蓷l數(shù)軸
③互相垂直
、茉c重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內(nèi)的.任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
數(shù)學知識點總結2
扇形統(tǒng)計圖
一、扇形統(tǒng)計圖的意義:
用整個圓的面積表示總數(shù),用圓內(nèi)各個扇形面積表示各部分數(shù)量同總數(shù)之間的關系。
也就是各部分數(shù)量占總數(shù)的百分比(因此也叫百分比圖)。
二、常用統(tǒng)計圖的優(yōu)點:
1、條形統(tǒng)計圖:可以清楚的看出各種數(shù)量的多少。
2、折線統(tǒng)計圖:不僅可以看出各種數(shù)量的多少,還可以清晰看出數(shù)量的增減變化情況。
3、扇形統(tǒng)計圖:能夠清楚的反映出各部分數(shù)量同總數(shù)之間的關系。
三、扇形的面積大小:
在同一個圓中,扇形的大小與這個扇形的圓心角的大小有關,圓心角越大,扇形越大。(因此扇形面積占圓面積的百分比,同時也是該扇形圓心角度數(shù)占圓周角度數(shù)的百分比。)
針對練習:
一、我國國土總面積是960萬平方千米。下面是我國地形分布情況統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答問題。
1、我國山地面積占總面積的`百分之幾?
2、各類地形中,什么地形面積?什么最小?
3、你還能得到哪些信息?
4、請算出各類地形的實際面積,填入下表。
地形種類山地丘陵高原盆地平原
面積(萬平方千米)
二、小軍家2012年11月支出情況統(tǒng)計如下圖。聰聰家2012年11月的總支出是3600元。請你回答問題。
1、這個月哪項出最多?支出了多少元?
2、文化教育支出了多少元?購買衣物支出了多少元?
3、購買衣物的支出比文化教育支出少百分之幾?
4、你還能提出什么問題?并解決你所提出的問題?
數(shù)學知識點總結3
有界性
設函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界.
單調(diào)性
設函數(shù)f(x)的定義域為D,區(qū)間I包含于D.如果對于區(qū)間上任意兩點x1及x2,當x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的.單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù).
奇偶性
設為一個實變量實值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù).
幾何上,一個奇函數(shù)關于原點對稱,亦即其圖像在繞原點做180度旋轉后不會改變.
奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x).
設f(x)為一實變量實值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù).
幾何上,一個偶函數(shù)關于y軸對稱,亦即其圖在對y軸映射后不會改變.
偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x).
偶函數(shù)不可能是個雙射映射.
連續(xù)性
在數(shù)學中,連續(xù)是函數(shù)的一種屬性.直觀上來說,連續(xù)的函數(shù)就是當輸入值的變化足夠小的時候,輸出的'變化也會隨之足夠小的函數(shù).如果輸入值的某種微小的變化會產(chǎn)生輸出值的一個突然的跳躍甚至無法定義,則這個函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性).
數(shù)學知識點總結4
一、同余的定義:
、偃魞蓚整數(shù)a、b除以的余數(shù)相同,則稱a、b對于模同余。
、谝阎齻整數(shù)a、b、如果|a-b,就稱a、b對于模同余,記作a≡b(d),讀作a同余于b模。
二、同余的`性質:
、僮陨硇裕篴≡a(d);
、趯ΨQ性:若a≡b(d),則b≡a(d);
、蹅鬟f性:若a≡b(d),b≡c(d),則a≡c(d);
、芎筒钚裕喝鬭≡b(d),c≡d(d),則a+c≡b+d(d),a-c≡b-d(d);
、菹喑诵裕喝鬭≡b(d),c≡d(d),則a×c≡b×d(d);
、蕹朔叫裕喝鬭≡b(d),則an≡bn(d);
、咄缎裕喝鬭≡b(d),整數(shù)c,則a×c≡b×c(d×c);
三、關于乘方的預備知識:
①若A=a×b,則MA=Ma×b=(Ma)b
、谌鬊=c+d則MB=Mc+d=Mc×Md
四、被3、9、11除后的余數(shù)特征:
、僖粋自然數(shù)M,n表示M的各個數(shù)位上數(shù)字的和,則M≡n(d9)或(d3);
、谝粋自然數(shù)M,X表示M的各個奇數(shù)位上數(shù)字的和,表示M的各個偶數(shù)數(shù)位上數(shù)字的和,則M≡-X或M≡11-(X-)(d11);
五、費爾馬小定理:如果p是質數(shù)(素數(shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(dp)。
數(shù)學知識點總結5
第一章:解三角形。掌握正弦余弦公式及其變式和推論和三角面積公式即可。
第二章:數(shù)列?荚嚤乜。等差等比數(shù)列的通項公式、前n項和及一些性質。這一章屬于學起來很容易,但做題卻不會做的類型?荚囶}中,一般都是要求通項公式、前n項和,所以拿到題目之后要帶有目的的去推導。
第三章:不等式。這一章一般用線性規(guī)劃的形式來考察。這種題一般是和實際問題聯(lián)系的,所以要會讀題,從題中找不等式,畫出線性規(guī)劃圖。然后再根據(jù)實際問題的限制要求求最值。
選修中的簡單邏輯用語、圓錐曲線和導數(shù):邏輯用語只要弄懂充分條件和必要條件到底指的是前者還是后者,四種命題的真假性關系,邏輯連接詞,及否命題和命題的否定的'區(qū)別,考試一般會用選擇題考這一知識點,難度不大;圓錐曲線一般作為考試的壓軸題出現(xiàn)。而且有多問,一般第一問較簡單,是求曲線方程,只要記住圓錐曲線的表達式難度就不大。后面兩到三問難打一般會很大,而且較費時間。所以不建議做。
這一章屬于學的比較難,考試也比較難,但是考試要求不高的內(nèi)容;導數(shù),導數(shù)公式、運算法則、用導數(shù)求極值和最值的方法。一般會考察用導數(shù)求最值,會用導數(shù)公式就難度不大。
數(shù)學知識點總結6
●不等式
1、不等式你會解么?你會解么?如果是寫解集不要忘記寫成集合形式!
2、的解集是(1,3),那么的解集是什么?
3、兩類恒成立問題圖象法——恒成立,則=?
★★★★分離變量法——在[1,3]恒成立,則=?(必考題)
4、線性規(guī)劃問題
(1)可行域怎么作(一定要用直尺和鉛筆)定界——定域——邊界
(2)目標函數(shù)改寫:(注意分析截距與z的關系)
。3)平行直線系去畫
5、基本不等式的形式和變形形式
如a,b為正數(shù),a,b滿足,則ab的范圍是
6、運用基本不等式求最值要注意:一正二定三相等!
如的最小值是的.最小值(不要忘記交代是什么時候取到=。。
一個非常重要的函數(shù)——對勾函數(shù)的圖象是什么?
運用對勾函數(shù)來處理下面問題的最小值是
7、★★兩種題型:
和——倒數(shù)和(1的代換),如x,y為正數(shù),且,求的最小值?
和——積(直接用基本不等式),如x,y為正數(shù),,則的范圍是?
不要忘記x,xy,x2+y2這三者的關系!如x,y為正數(shù),則的范圍是?
數(shù)學知識點總結7
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關系的數(shù)學式子叫做函數(shù)解析式或函數(shù)關系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。
。2)列表法
把自變量x的.一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。
。3)圖像法
用圖像表示函數(shù)關系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
。1)列表:列表給出自變量與函數(shù)的一些對應值。
。2)描點:以表中每對對應值為坐標,在坐標平面內(nèi)描出相應的點。
。3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
數(shù)學知識點總結8
豎式除法
1、能正確掌握除法豎式的書寫格式,掌握除法豎式的寫法和每一步所表示的含義。
2、進一步體會除法的意義。
有余數(shù)的除法
1、體會有余數(shù)除法的意義。
2、積累正確的試商方法。
4、能用豎式正確計算有余數(shù)除法,了解余數(shù)一定要比除數(shù)小。
5、能運用有余數(shù)除法的知識解決一些簡單的實際問題。
分蘋果(豎式除法)
知識點:
1、掌握表內(nèi)除法豎式的書寫格式。
2、掌握除法豎式的寫法和每一步所表示的`含義。
分橘子(有余數(shù)的除法(一))
知識點:
1、體會有余數(shù)除法的意義。
2、會用豎式表示有余數(shù)的除法,了解余數(shù)一定要比除數(shù)小。
分草莓(有余數(shù)的除法(二))
知識點:
1、掌握正確的試商方法。利用乘法口訣,兩數(shù)相乘的積最接近被除數(shù),而又比被除數(shù)小。
2、能運用有余數(shù)除法的知識解決一些簡單的實際問題。
租船(有余數(shù)除法的應用(一))
知識點:
靈活運用有余數(shù)的除法的有關知識解決生活中的簡單實際問題。
派車(有余數(shù)除法的應用(二))
知識點:
靈活運用有余數(shù)除法及相關知識解決生活中的簡單實際問題。
數(shù)學知識點總結9
1、重心的定義:平面圖形中,幾何圖形的重心是當支撐或懸掛時圖形能在水平面處于平衡狀態(tài),此時的支撐點或者懸掛點叫做平衡點,也叫做重心。
2、幾種幾何圖形的重心:
、啪段的重心就是線段的中點;
⑵平行四邊形及特殊平行四邊形的重心是它的兩條對角線的交點;
⑶三角形的三條中線交于一點,這一點就是三角形的重心;
、热我舛噙呅味加兄匦模远噙呅蔚娜我鈨蓚頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的重心。
提示:⑴無論幾何圖形的形狀如何,重心都有且只有一個;
、茝奈锢韺W角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的`力矩相同。
3、常見圖形重心的性質:
、啪段的重心把線段分為兩等份;
、破叫兴倪呅蔚闹匦陌褜蔷分為兩等份;
⑶三角形的重心把中線分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。
上面對重心知識點的鞏固學習,同學們都能熟練的掌握了吧,希望同學們很好的復習學習數(shù)學知識。
【數(shù)學知識點總結】相關文章:
小學數(shù)學計算知識點總結08-28
小學數(shù)學集合知識點總結09-05
中考數(shù)學知識點總結05-19
大學數(shù)學實驗知識點總結08-19
初中數(shù)學知識點總結08-15
蘇教版數(shù)學中考知識點總結06-04
小學數(shù)學圓的知識點總結07-26
高三數(shù)學復習知識點總結06-20
高三數(shù)學知識點總結07-04
小學數(shù)學必背知識點總結07-10