国产真实乱子伦精品,国产精品100页,美女网站色免费,国产白嫩美女免费观看,欧美精品亚洲,欧美韩国xxx,欧美性猛交xxxxxxxx软件

推薦文檔列表

初二上冊數(shù)學(xué)知識點(diǎn)總結(jié)

時(shí)間:2023-02-05 08:12:01 總結(jié) 我要投稿

初二上冊數(shù)學(xué)知識點(diǎn)總結(jié)

  總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),通過它可以正確認(rèn)識以往學(xué)習(xí)和工作中的優(yōu)缺點(diǎn),不妨讓我們認(rèn)真地完成總結(jié)吧。但是總結(jié)有什么要求呢?下面是小編幫大家整理的初二上冊數(shù)學(xué)知識點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。

初二上冊數(shù)學(xué)知識點(diǎn)總結(jié)

初二上冊數(shù)學(xué)知識點(diǎn)總結(jié)1

  一、在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。

  二、平面直角坐標(biāo)系及有關(guān)概念

  1、平面直角坐標(biāo)系

  在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。

  2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。

  注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。

  3、點(diǎn)的坐標(biāo)的概念

  對于平面內(nèi)任意一點(diǎn)P,過點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(a,b)叫做點(diǎn)P的坐標(biāo)。

  點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有,分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。

  平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對是一一對應(yīng)的。

  4、不同位置的點(diǎn)的坐標(biāo)的特征

  (1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征

  點(diǎn)P(x,y)在第一象限:x0

  點(diǎn)P(x,y)在第二象限:x0

  點(diǎn)P(x,y)在第三象限:x0

  點(diǎn)P(x,y)在第四象限:x0

  (2)、坐標(biāo)軸上的點(diǎn)的特征

  點(diǎn)P(x,y)在x軸上,y=0,x為任意實(shí)數(shù)

  點(diǎn)P(x,y)在y軸上,x=0,y為任意實(shí)數(shù)

  點(diǎn)P(x,y)既在x軸上,又在y軸上,x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)

  (3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征

  點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等

  點(diǎn)P(x,y)在第二、四象限夾角平分線上,x與y互為相反數(shù)

  (4)、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征

  位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。

  位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。

  (5)、關(guān)于x軸、y軸或原點(diǎn)對稱的點(diǎn)的坐標(biāo)的.特征

  點(diǎn)P與點(diǎn)p關(guān)于x軸對稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對稱點(diǎn)為P(x,-y)

  點(diǎn)P與點(diǎn)p關(guān)于y軸對稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對稱點(diǎn)為P(-x,y)

  點(diǎn)P與點(diǎn)p關(guān)于原點(diǎn)對稱橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對稱點(diǎn)為P(-x,-y)

  (6)、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離

  點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:

  (1)點(diǎn)P(x,y)到x軸的距離等于|y|;

  (2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于|x|;

  (3)點(diǎn)P(x,y)到原點(diǎn)的距離等于根號x*x+y*y

  三、坐標(biāo)變化與圖形變化的規(guī)律:

  坐標(biāo)(x,y)的變化

  圖形的變化

  x a或y a

  被橫向或縱向拉長(壓縮)為原來的a倍

  x a,y a

  放大(縮小)為原來的a倍

  x (-1)或y (-1)

  關(guān)于y軸或x軸對稱

  x (-1),y (-1)

  關(guān)于原點(diǎn)成中心對稱

  x +a或y+ a

  沿x軸或y軸平移a個(gè)單位

  x +a,y+ a

  沿x軸平移a個(gè)單位,再沿y軸平移a個(gè)單

初二上冊數(shù)學(xué)知識點(diǎn)總結(jié)2

 。ㄒ唬┻\(yùn)用公式法:

  我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項(xiàng)式分解因式。于是有:

  a2—b2=(a+b)(a—b)

  a2+2ab+b2=(a+b)2

  a2—2ab+b2=(a—b)2

  如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式。這種分解因式的方法叫做運(yùn)用公式法。

  (二)平方差公式

  1.平方差公式

 。1)式子:a2—b2=(a+b)(a—b)

  (2)語言:兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積。這個(gè)公式就是平方差公式。

  (三)因式分解

  1.因式分解時(shí),各項(xiàng)如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

  2.因式分解,必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止。

 。ㄋ模┩耆椒焦

 。1)把乘法公式(a+b)2=a2+2ab+b2和(a—b)2=a2—2ab+b2反過來,就可以得到:

  a2+2ab+b2 =(a+b)2

  a2—2ab+b2 =(a—b)2

  這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。

  把a(bǔ)2+2ab+b2和a2—2ab+b2這樣的式子叫完全平方式。

  上面兩個(gè)公式叫完全平方公式。

 。2)完全平方式的形式和特點(diǎn)

 、夙(xiàng)數(shù):三項(xiàng)

  ②有兩項(xiàng)是兩個(gè)數(shù)的的平方和,這兩項(xiàng)的符號相同。

 、塾幸豁(xiàng)是這兩個(gè)數(shù)的積的兩倍。

  (3)當(dāng)多項(xiàng)式中有公因式時(shí),應(yīng)該先提出公因式,再用公式分解。

 。4)完全平方公式中的a、b可表示單項(xiàng)式,也可以表示多項(xiàng)式。這里只要將多項(xiàng)式看成一個(gè)整體就可以了。

 。5)分解因式,必須分解到每一個(gè)多項(xiàng)式因式都不能再分解為止。

 。ㄎ澹┓纸M分解法

  我們看多項(xiàng)式am+ an+ bm+ bn,這四項(xiàng)中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

  如果我們把它分成兩組(am+ an)和(bm+ bn),這兩組能分別用提取公因式的方法分別分解因式。

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m +n)

  做到這一步不叫把多項(xiàng)式分解因式,因?yàn)樗环弦蚴椒纸獾囊饬x。但不難看出這兩項(xiàng)還有公因式(m+n),因此還能繼續(xù)分解,所以

  原式=(am +an)+(bm+ bn)

  =a(m+ n)+b(m+ n)

  =(m +n)×(a +b)。

  這種利用分組來分解因式的方法叫做分組分解法。從上面的例子可以看出,如果把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來分解因式。

  (六)提公因式法

  1.在運(yùn)用提取公因式法把一個(gè)多項(xiàng)式因式分解時(shí),首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式。當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃,或改變符號,直到可確定多項(xiàng)式的公因式。

  2.運(yùn)用公式x2 +(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:

  1.必須先將常數(shù)項(xiàng)分解成兩個(gè)因數(shù)的積,且這兩個(gè)因數(shù)的代數(shù)和等于一次項(xiàng)的系數(shù)。

  2.將常數(shù)項(xiàng)分解成滿足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:

 、倭谐龀(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;

 、趪L試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù)。

  3.將原多項(xiàng)式分解成(x+q)(x+p)的形式。

 。ㄆ撸┓质降某顺

  1.把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。

  2.分式進(jìn)行約分的目的是要把這個(gè)分式化為最簡分式。

  3.如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式。如果分子或分母中的多項(xiàng)式不能分解因式,此時(shí)就不能把分子、分母中的某些項(xiàng)單獨(dú)約分。

  4.分式約分中注意正確運(yùn)用乘方的符號法則,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。

  5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個(gè)分式的符號,然后再按—1的偶次方為正、奇次方為負(fù)來處理。當(dāng)然,簡單的分式之分子分母可直接乘方。

  6.注意混合運(yùn)算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減。

 。ò耍┓?jǐn)?shù)的加減法

  1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形。約分是針對一個(gè)分式而言,而通分是針對多個(gè)分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來。

  2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。

  3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。

  4.通分的依據(jù):分式的基本性質(zhì)。

  5.通分的關(guān)鍵:確定幾個(gè)分式的公分母。

  通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。

  6.類比分?jǐn)?shù)的通分得到分式的通分:

  把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分。

  7.同分母分式的`加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

  同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。

  8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減。

  9.同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個(gè)分子是個(gè)整體,要適時(shí)添上括號。

  10.對于整式和分式之間的加減運(yùn)算,則把整式看成一個(gè)整體,即看成是分母為1的分式,以便通分。

  11.異分母分式的加減運(yùn)算,首先觀察每個(gè)公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運(yùn)算簡化。

  12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡分式。

 。ň牛┖凶帜赶禂(shù)的一元一次方程

  1.含有字母系數(shù)的一元一次方程

  引例:一數(shù)的a倍(a≠0)等于b,求這個(gè)數(shù)。用x表示這個(gè)數(shù),根據(jù)題意,可得方程ax=b(a≠0)

  在這個(gè)方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對x來說,字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個(gè)方程就是一個(gè)含有字母系數(shù)的一元一次方程。

  含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個(gè)式子的值不能等于零

初二上冊數(shù)學(xué)知識點(diǎn)總結(jié)3

  1、全等三角形的對應(yīng)邊、對應(yīng)角相等

  2、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等

  3、角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等

  4、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等

  5、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個(gè)三角形全等

  6、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等

  7、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  8、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  9、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  10、等腰三角形的性質(zhì)定理等腰三角形的`兩個(gè)底角相等(即等邊對等角)

  21、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  22、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  23、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  24、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

  25、推論1三個(gè)角都相等的三角形是等邊三角形

  26、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

  27、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半

  28、直角三角形斜邊上的中線等于斜邊上的一半

  29、定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  30、逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

初二上冊數(shù)學(xué)知識點(diǎn)總結(jié)4

  第一章勾股定理

  1、探索勾股定理

  ①勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2

  2、一定是直角三角形嗎

  ①如果三角形的三邊長a b c滿足a2+b2=c2,那么這個(gè)三角形一定是直角三角形

  3、勾股定理的應(yīng)用

  第二章實(shí)數(shù)

  1、認(rèn)識無理數(shù)

  ①有理數(shù):總是可以用有限小數(shù)和無限循環(huán)小數(shù)表示

 、跓o理數(shù):無限不循環(huán)小數(shù)

  2、平方根

 、偎銛(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么這個(gè)正數(shù)x就叫做a的算數(shù)平方根

 、谔貏e地,我們規(guī)定:0的算數(shù)平方根是0

 、燮椒礁阂话愕,如果一個(gè)數(shù)x的平方等于a,即x2=a。那么這個(gè)數(shù)x就叫做a的平方根,也叫做二次方根

  ④一個(gè)正數(shù)有兩個(gè)平方根;0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒有平方根

 、菡龜(shù)有兩個(gè)平方根,一個(gè)是a的算數(shù)平方,另一個(gè)是—,它們互為相反數(shù),這兩個(gè)平方根合起來可記作±

 、揲_平方:求一個(gè)數(shù)a的平方根的運(yùn)算叫做開平方,a叫做被開方數(shù)

  3、立方根

 、倭⒎礁阂话愕,如果一個(gè)數(shù)x的立方等于a,即x3=a,那么這個(gè)數(shù)x就叫做a的立方根,也叫三次方根

 、诿總(gè)數(shù)都有一個(gè)立方根,正數(shù)的立方根是正數(shù);0立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。

 、坶_立方:求一個(gè)數(shù)a的立方根的運(yùn)算叫做開立方,a叫做被開方數(shù)

  4、估算

 、俟浪悖话憬Y(jié)果是相對復(fù)雜的小數(shù),估算有精確位數(shù)

  5、用計(jì)算機(jī)開平方

  6、實(shí)數(shù)

 、賹(shí)數(shù):有理數(shù)和無理數(shù)的統(tǒng)稱

  ②實(shí)數(shù)也可以分為正實(shí)數(shù)、0、負(fù)實(shí)數(shù)

 、勖恳粋(gè)實(shí)數(shù)都可以在數(shù)軸上表示,數(shù)軸上每一個(gè)點(diǎn)都對應(yīng)一個(gè)實(shí)數(shù),在數(shù)軸上,右邊的點(diǎn)永遠(yuǎn)比左邊的點(diǎn)表示的數(shù)大

  7、二次根式

 、俸x:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開方數(shù)

  ② =(a≥0,b≥0),=(a≥0,b>0)

 、圩詈喍胃剑阂话愕,被開方數(shù)不含分母,也不含能開的盡方的因數(shù)或因式,這樣的二次根式,叫做最簡二次根式

 、芑啎r(shí),通常要求最終結(jié)果中分母不含有根號,而且各個(gè)二次根式時(shí)最簡二次根式

  第三章位置與坐標(biāo)

  1、確定位置

 、僭谄矫鎯(nèi),確定一個(gè)物體的位置一般需要兩個(gè)數(shù)據(jù)

  2、平面直角坐標(biāo)系

  ①含義:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系

 、谕ǔ5兀瑑蓷l數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)o被稱為直角坐標(biāo)系的原點(diǎn)

 、劢⒘似矫嬷苯亲鴺(biāo)系,平面內(nèi)的點(diǎn)就可以用一組有序?qū)崝?shù)對來表示

 、茉谄矫嬷苯亲鴺(biāo)系中,兩條坐標(biāo)軸將坐標(biāo)平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時(shí)針方向叫做第二象限,第三象限,第四象限,坐標(biāo)軸上的點(diǎn)不在任何一個(gè)象限

 、菰谥苯亲鴺(biāo)系中,對于平面上任意一點(diǎn),都有唯一的一個(gè)有序?qū)崝?shù)對(即點(diǎn)的坐標(biāo))與它對應(yīng);反過來,對于任意一個(gè)有序?qū)崝?shù)對,都有平面上唯一的一點(diǎn)與它對應(yīng)

  3、軸對稱與坐標(biāo)變化

 、訇P(guān)于x軸對稱的兩個(gè)點(diǎn)的坐標(biāo),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對稱的兩個(gè)點(diǎn)的坐標(biāo),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)

  第四章一次函數(shù)

  1、函數(shù)

  ①一般地,如果在一個(gè)變化過程中有兩個(gè)變量x和y,并且對于變量x的每一個(gè)值,變量y都有唯一的值與它對應(yīng),那么我們稱y是x的函數(shù)其中x是自變量

 、诒硎竞瘮(shù)的方法一般有:列表法、關(guān)系式法和圖象法

 、蹖τ谧宰兞吭诳扇≈捣秶鷥(nèi)的一個(gè)確定的值a,函數(shù)有唯一確定的對應(yīng)值,這個(gè)對應(yīng)值稱為當(dāng)自變量等于a的函數(shù)值

  2、一次函數(shù)與正比例函數(shù)

  ①若兩個(gè)變量x,y間的對應(yīng)關(guān)系可以表示成y=kx+b(k、b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù),特別的,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)

  3、一次函數(shù)的圖像

 、僬壤瘮(shù)y=kx的圖像是一條經(jīng)過原點(diǎn)(0,0)的直線。因此,畫正比例函數(shù)圖像是,只要再確定一點(diǎn),過這個(gè)點(diǎn)與原點(diǎn)畫直線就可以了

  ②在正比例函數(shù)y=kx中,當(dāng)k>0時(shí),y的值隨著x值的增大而減;當(dāng)k<0時(shí),y的值隨著x的值增大而減小

 、垡淮魏瘮(shù)y=kx+b的圖像是一條直線,因此畫一次函數(shù)圖像時(shí),只要確定兩個(gè)點(diǎn),再過這兩點(diǎn)畫直線就可以了。一次函數(shù)y=kx+b的圖像也稱為直線y=kx+b

 、芤淮魏瘮(shù)y=kx+b的圖像經(jīng)過點(diǎn)(0,b)。當(dāng)k>0時(shí),y的值隨著x值的增大而增大;當(dāng)k<0時(shí),y的值隨著x值的增大而減小

  4、一次函數(shù)的應(yīng)用

 、僖话愕,當(dāng)一次函數(shù)y=kx+b的函數(shù)值為0時(shí),相應(yīng)的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數(shù)y=kx+b的圖像與x軸交點(diǎn)的橫坐標(biāo)就是方程kx+b=0

  第五章二元一次方程組

  1、認(rèn)識二元一次方程組

  ①含有兩個(gè)未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程

  ②共含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組

  ③二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解

  2、求解二元一次方程組

 、賹⑵渲幸粋(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來,并代入另個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱為代入消元法,簡稱代入法

  ②通過兩式子加減,消去其中一個(gè)未知數(shù),這種解二元一次方程組的.方法叫做加減消元法,簡稱加減法

  3、應(yīng)用二元一次方程組

  ①雞兔同籠

  4、應(yīng)用二元一次方程組

 、僭鰷p收支

  5、應(yīng)用二元一次方程組

 、倮锍瘫系臄(shù)

  6、二元一次方程組與一次函數(shù)

 、僖话愕兀砸粋(gè)二元一次方程的解為坐標(biāo)的點(diǎn)組成的圖像與相應(yīng)的一次函數(shù)的圖像相同,是一條直線

 、谝话愕兀瑥膱D形的角度看,確定兩條直線相交點(diǎn)的坐標(biāo),相當(dāng)于求相應(yīng)的二元一次方程組的解,解一個(gè)二元一次方程組相當(dāng)于確定相應(yīng)兩條直線交點(diǎn)的坐標(biāo)

  7、用二元一次方程組確定一次函數(shù)表達(dá)式

 、傧仍O(shè)出函數(shù)表達(dá)式,再根據(jù)所給條件確定表達(dá)式中未知的系數(shù),從而得到函數(shù)表達(dá)式的方法,叫做待定系數(shù)法。

  8、三元一次方程組

  ①在一個(gè)方程組中,各個(gè)式子都含有三個(gè)未知數(shù),并且所含有未知數(shù)的項(xiàng)的次數(shù)都是1,這樣的方程叫做三元一次方程

 、谙襁@樣,共含有三個(gè)未知數(shù)的三個(gè)一次方程所組成的一組方程,叫做三元一次方程組

 、廴淮畏匠探M中各個(gè)方程的公共解,叫做這個(gè)三元一次方程組的解。

  第六章數(shù)據(jù)的分析

  1、平均數(shù)

 、僖话愕兀瑢τ趎個(gè)數(shù),我們把(x1+x2+···+xn)叫做這n個(gè)數(shù)的算數(shù)平均數(shù),簡稱平均數(shù)記為。

  ②在實(shí)際問題中,一組數(shù)據(jù)里的各個(gè)數(shù)據(jù)的“重要程度”未必相同,因而在計(jì)算,這組數(shù)據(jù)的平均數(shù)時(shí),往往給每個(gè)數(shù)據(jù)一個(gè)權(quán),叫做加權(quán)平均數(shù)

  2、中位數(shù)與眾數(shù)

  ①中位數(shù):一般地,n個(gè)數(shù)據(jù)按大小順序排列,處于最中間位置的一個(gè)數(shù)據(jù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)

 、谝唤M數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)

  ③平均數(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢的統(tǒng)計(jì)量

  ④計(jì)算平均數(shù)時(shí),所有數(shù)據(jù)都參加運(yùn)算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實(shí)生活中較為常用,但他容易受極端值影響。

 、葜形粩(shù)的優(yōu)點(diǎn)是計(jì)算簡單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息

 、薷鱾(gè)數(shù)據(jù)重復(fù)次數(shù)大致相等時(shí),眾數(shù)往往沒有特別意義

  3、從統(tǒng)計(jì)圖分析數(shù)據(jù)的集中趨勢

  4、數(shù)據(jù)的離散程度

 、賹(shí)際生活中,除了關(guān)心數(shù)據(jù)的集中趨勢外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對于集中趨勢的偏離情況。一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量

 、跀(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差刻畫

  ③方差是各個(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)

 、芷渲惺瞧骄鶖(shù),s2是方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根

  ⑤一般而言,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

  第七章平行線的證明

  1、為什么要證明

 、賹(shí)驗(yàn)、觀察、歸納得到的結(jié)論可能正確,也可能不正確,因此,要判斷一個(gè)數(shù)學(xué)結(jié)論是否正確,僅僅依靠實(shí)驗(yàn)、觀察、歸納是不夠的,必須進(jìn)行有根有據(jù)的證明

  2、定義與命題

 、僮C明時(shí),為了交流方便,必須對某些名稱和術(shù)語形成共同的認(rèn)識,為此,就要對名稱和術(shù)語的含義加以描述,做出明確的規(guī)定,也就是給它們的定義

  ②判斷一件事情的句子,叫做命題

 、垡话愕兀總(gè)命題都由條件和結(jié)論兩部分組成。條件是已知的選項(xiàng),結(jié)論是已知選項(xiàng)推出的事項(xiàng)。命題通常可以寫成“如果....那么....”的形式,其中“如果”引出的部分是條件,“那么”引出的部分是結(jié)論

 、苷_的命題稱為真命題,不正確的命題稱為假命題

 、菀f明一個(gè)命題是假命題,常?梢耘e出一個(gè)例子,使它具備命題的條件,而不具有命題的結(jié)論,這種例子稱為反例

 、逇W幾里得在編寫《原本》時(shí),挑選了一部分?jǐn)?shù)學(xué)名詞和一部分公認(rèn)的真命題作為證實(shí)其他命題的出發(fā)點(diǎn)和依據(jù)。其中數(shù)學(xué)名詞稱為原名,公認(rèn)的真命題稱為公理,除了公理外,其他命題的真假都需要通過演繹推理的方法進(jìn)行判斷

 、哐堇[推理的過程稱為證明,經(jīng)過證明的真命題稱為定理,每個(gè)定理都只能用公理、定義和已經(jīng)證明為真的命題來證明

  a.本套教科書選用九條基本事實(shí)作為證明的出發(fā)點(diǎn)和依據(jù),其中八條是:兩點(diǎn)確定一條直線

  b.兩點(diǎn)之間線段最短

  c.同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直

  d.兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(簡述為:同位角相等,兩直線平行)

  e.過直線外一點(diǎn)有且只有一條直線與這條直線平行

  f.兩邊及其夾角分別相等的兩個(gè)三角形全等

  g.兩角及其夾邊分別相等的兩個(gè)三角形全等

  h.三邊分別相等的兩個(gè)三角形全等

  ⑧此外,數(shù)與式的運(yùn)算律和運(yùn)算法則、等式的有關(guān)性質(zhì),以及反映大小關(guān)系的有關(guān)性質(zhì)都可以作為證明的依據(jù)

 、岫ɡ恚和牵ǖ冉牵┑难a(bǔ)角相等

  同角(等角)的余角相等

  三角形的任意兩邊之和大于第三邊

  對頂角相等

  3、平行線的判定

 、俣ɡ恚簝蓷l直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線平行,簡述為:內(nèi)錯(cuò)角相等,兩直線平行

 、诙ɡ恚簝蓷l直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行,簡述為:同旁內(nèi)角互補(bǔ),兩直線平行。

  4、平行線的性質(zhì)

 、俣ɡ恚簝蓷l平行直線被第三條直線所截,同位角相等。簡述為:兩直線平行,同位角相等

  ②定理:兩條平行直線被第三條直線所截,內(nèi)錯(cuò)角相等。簡述為:兩直線平行,內(nèi)錯(cuò)角相等

 、鄱ɡ恚簝蓷l平行直線被第三條直線所截,同旁內(nèi)角互補(bǔ)。簡述為:兩直線平行,同旁內(nèi)角互補(bǔ)

  ④定理:平行于同一條直線的兩條直線平行

  5、三角形內(nèi)角和定理

 、偃切蝺(nèi)角和定理:三角形的內(nèi)角和等于180°

 、诙ɡ恚喝切蔚囊粋(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  定理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

  ③我們通過三角形的內(nèi)角和定理直接推導(dǎo)出兩個(gè)新定理。像這樣,由一個(gè)基本事實(shí)或定理直接推出的定理,叫做這個(gè)基本事實(shí)或定理的推論,推論可以當(dāng)定理使用。

初二上冊數(shù)學(xué)知識點(diǎn)總結(jié)5

  一、實(shí)數(shù)的概念及分類

  1、實(shí)數(shù)的分類

  一是分類是:正數(shù)、負(fù)數(shù)、0;

  另一種分類是:有理數(shù)、無理數(shù)

  將兩種分類進(jìn)行組合:負(fù)有理數(shù),負(fù)無理數(shù),0,正有理數(shù),正無理數(shù)

  2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。

  在理解無理數(shù)時(shí),要抓住“無限不循環(huán)”這一時(shí)之,歸納起來有四類:

  (1)開方開不盡的數(shù),如等;

  (2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;

  (3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;

  (4)某些三角函數(shù)值,如sin60o等

  二、實(shí)數(shù)的倒數(shù)、相反數(shù)和絕對值

  1、相反數(shù)

  實(shí)數(shù)與它的相反數(shù)時(shí)一對數(shù)(只有符號不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對應(yīng)的點(diǎn)關(guān)于原點(diǎn)對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。

  2、絕對值

  在數(shù)軸上,一個(gè)數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的`距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

  3、倒數(shù)

  如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

  4、數(shù)軸

  規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。

  解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對應(yīng)的,并能靈活運(yùn)用。