關(guān)于《一元二次方程》教案(精選11篇)
作為一名老師,時常會需要準備好教案,教案是實施教學的主要依據(jù),有著至關(guān)重要的作用。優(yōu)秀的教案都具備一些什么特點呢?下面是小編為大家整理的《一元二次方程》教案,歡迎大家借鑒與參考,希望對大家有所幫助。
《一元二次方程》教案 1
教材內(nèi)容
1.本單元教學的主要內(nèi)容。
一元二次方程概念;解一元二次方程的方法;一元二次方程應(yīng)用題。
2.本單元在教材中的地位與作用。
一元二次方程是在學習《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學習的,它也是一種數(shù)學建模的方法.學好一元二次方程是學好二次函數(shù)不可或缺的,是學好高中數(shù)學的奠基工程.應(yīng)該說,一元二次方程是本書的重點內(nèi)容。
教學目標
1.知識與技能
了解一元二次方程及有關(guān)概念;掌握通過配方法、公式法、因式分解法降次──解一元二次方程;掌握依據(jù)實際問題建立一元二次方程的數(shù)學模型的方法;應(yīng)用熟練掌握以上知識解決問題.
2.過程與方法
(1)通過豐富的實例,讓學生合作探討,老師點評分析,建立數(shù)學模型.根據(jù)數(shù)學模型恰如其分地給出一元二次方程的概念。
。2)結(jié)合七冊上整式中的有關(guān)概念介紹一元二次方程的派生概念,如二次項等。
。3)通過掌握缺一次項的`一元二次方程的解法──直接開方法,導入用配方法解一元二次方程,又通過大量的練習鞏固配方法解一元二次方程。
(4)通過用已學的配方法解ax2+bx+c=0(a≠0)導出解一元二次方程的求根公式,接著討論求根公式的條件:b2-4ac>0,b2-4ac=0,b2-4ac<0。
。5)通過復習八年級上冊《整式》的第3節(jié)因式分解進行知識遷移,解決用因式分解法解一元二次方程,并用練習鞏固它。
(6)提出問題、分析問題,建立一元二次方程的數(shù)學模型,并用該模型解決實際問題。
3.情感、態(tài)度與價值觀
經(jīng)歷由事實問題中抽象出一元二次方程等有關(guān)概念的過程,使同學們體會到通過一元二次方程也是刻畫現(xiàn)實世界中的數(shù)量關(guān)系的一個有效數(shù)學模型;經(jīng)歷用配方法、公式法、分解因式法解一元二次方程的過程,使同學們體會到轉(zhuǎn)化等數(shù)學思想;經(jīng)歷設(shè)置豐富的問題情景,使學生體會到建立數(shù)學模型解決實際問題的過程,從而更好地理解方程的意義和作用,激發(fā)學生的學習興趣。
教學重點:
1.一元二次方程及其它有關(guān)的概念。
2.用配方法、公式法、因式分解法降次──解一元二次方程。
3.利用實際問題建立一元二次方程的數(shù)學模型,并解決這個問題。
教學難點:
1.一元二次方程配方法解題。
2.用公式法解一元二次方程時的討論。
3.建立一元二次方程實際問題的數(shù)學模型;方程解與實際問題解的區(qū)別。
教學關(guān)鍵:
1.分析實際問題如何建立一元二次方程的數(shù)學模型。
2.用配方法解一元二次方程的步驟。
3.解一元二次方程公式法的推導。
課時劃分
本單元教學時間約需13課時,具體分配如下:
1 一元二次方程 2課時
2 降次──解一元二次方程 5課時
3 一元二次方程的根與系數(shù)的關(guān)系 2課時
4實際問題與一元二次方程 4課時
復習與小結(jié) 1課時
《一元二次方程》教案 2
教學目標:
1、經(jīng)歷抽象一元二次方程概念的過程,進一步體會是刻畫現(xiàn)實世界的有效數(shù)學模型
2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能將一元二次方程轉(zhuǎn)化為一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項。
教學重點
1、一元二次方程及其它有關(guān)的概念。
2、利用實際問題建立一元二次方程的數(shù)學模型。
教學難點
1、建立一元二次方程實際問題的數(shù)學模型.
2、把一元二次方程化為一般形式
教學方法:指導自學,自主探究
課時:第一課時
教學過程:
。▽W生通過導學提綱,了解本節(jié)課自己應(yīng)該掌握的內(nèi)容)
一、自主探索:(學生通過自學,經(jīng)歷思考、討論、分析的過程,最終形成一元二次方程及其有關(guān)概念)
1、請認真完成課本P39—40議一議以上的內(nèi)容;化簡上述三個方程.。
2、你發(fā)現(xiàn)上述三個方程有什么共同特點?
你能把這些特點用一個方程概括出來嗎?
3、請同學看課本40頁,理解記憶一元二次方程的概念及有關(guān)概念
你覺得理解這個概念要掌握哪幾個要點?你還掌握了什么?
二、學以致用:(通過練習,加深學生對一元二次方程及其有關(guān)概念的理解與把握)
。、下列哪些是一元二次方程?哪些不是?
、佗冖
、躼2+2x-3=1+x2 ⑤ax2+bx+c=0
2、判斷下列方程是不是關(guān)于x的一元二次方程,如果是,寫出它的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
。1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)
3、若關(guān)于x的方程(k-3)x2+2x-1=0是一元二次方程,則k的值是多少?
4、關(guān)于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么條件下它是一元二次方程?在什么條件下它是一元一次方程?
5、以-2、3、0三個數(shù)作為一個一元二次方程的系數(shù)和常數(shù)項,請你寫出滿足條件的不同的一元二次方程?
三、反思:(學生,進一步加深本節(jié)課所學內(nèi)容)
這節(jié)課你學到了什么?
四、自查自省:(通過當堂小測,及時發(fā)現(xiàn)問題,及時應(yīng)對)
1、下列方程中是一元二次方程的有()A、1個B、2個 C、3個D、4個
。1)(2)(3)(4)(5)(6)2、將方程-5x2+1=6x化為一般形式為____________________.其二次項是_________,系數(shù)為_______,一次項系數(shù)為______,常數(shù)項為______。
3、關(guān)于x的方程(m2-4)x2+(m+2)x+2m+3=0,當m__________時,是一元二次方程;當m__________時,是一元一次方程.
作業(yè):必做題:習題7.1
選做題:(挑戰(zhàn)自我)p41隨堂練習
1、已知關(guān)于的方程是一元二次方程,則為何值?
2、.當m為何值時,方程(m+1)x+1+27mx+5=0是關(guān)x于的一元二次方程?
3、關(guān)于的一元二次方程(m-1)x2+x+m2-1=0有一根為,則的值多少?
4、某校為了美化校園,準備在一塊長32米,寬20米的長方形場地上修筑若干條道路,余下部分作草坪,并請全校同學參與設(shè)計,現(xiàn)在有兩位學生各設(shè)計了一種(如圖),根據(jù)兩種設(shè)計各列出方程,求圖中道路的寬分別是多少,使圖(1),(2)的草坪面積為540米2.?
。1)(2)
板書設(shè)計:一元二次方程
定義:一個未知數(shù)整式方程可以化為
一般形式ax2+bx+c=0(a、b、c為常數(shù),a≠0)
二次項一次項常數(shù)項
系數(shù)為a系數(shù)為b
教學反思
這次我參加了區(qū)里組織的`優(yōu)質(zhì)
課比賽,這次的優(yōu)質(zhì)課采用市里要求的1/3模式,這對于我們來說具有一定的挑戰(zhàn)性。所謂“1/3模式”,就是把課堂教學時間大致分為3個部分,1/3的時間個人自主學習,1/3的時間小組合作學習,1/3的時間全班交流討論。在1/3模式中,整個教學過程由教師和學生共同參與,每個環(huán)節(jié)1/3的時間只是大致的劃分,可根據(jù)學習內(nèi)容靈活安排。這就對教師提出了較高的要求。
首先要準備好學案。學案就是學生學習的依據(jù)。在學案里,教師要提出明確的學習要求。學習要求可包括以下方面:完成學習任務(wù)的時間、學習內(nèi)容的范圍、完成學習任務(wù)所要達到的程度、自主學習成果展現(xiàn)的形式等。這就要求教師要提前考慮周全,對于學生學習的要求要一次性提出,內(nèi)容上有梯度。學生自主學習時,教師要深入學生當中,觀察學生的學習狀況,檢查學習任務(wù)完成的情況,有針對性的指導和幫助教師對自主學習方法和途徑的指導要適度,既要滿足學生完成學習任務(wù)的需要,又不能擠占學生自主探究的空間
其次,學習氛圍是合作學習成功的關(guān)鍵之一,教師要營造安全的心理環(huán)境、充裕的時空環(huán)境、熱情的幫助環(huán)境、真誠的激勵環(huán)境,只就要求教師在語言上也要有較高水平,會發(fā)動學生,會調(diào)動學生的積極性,讓課堂氣氛活躍起來,讓學生充分發(fā)揮自己的水平。
再是,由于課堂上主要是以學生為主。這就要求教師盡量少講,要充當好組織者、引導者、傾聽者的角色,不要急于發(fā)表自己的觀點,只要學生能講的教師就不要講,要避免因為教師呈現(xiàn)自己的觀點而打破學生的討論。學生說完的東西,如果沒有問題,教師就不要重復。教師對學習內(nèi)容要點的講解要有的放矢,能起到畫龍點睛的作用。要在學生原有的水平上進行提升,有助于學生加深對知識的理解。
我們只有在教學中不斷的學習,不斷的改進自己,才能保證我們的課堂很精彩,是名副其實的優(yōu)質(zhì)課。
《一元二次方程》教案 3
教學目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣。
教學難點和難點:
重點:
1.一元二次方程的有關(guān)概念
2.會把一元二次方程化成一般形式
難點:
一元二次方程的含義.
教學過程設(shè)計
一、引入新課
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么數(shù)學方法解決?(間接計算即列方程解應(yīng)用題。
3.讓學生自己列出方程(x(x十5)=150)
深入引導:方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數(shù)的最高次數(shù)是幾。如果方程未知數(shù)的最高次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)
3.強化一元二次方程的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:(2)x2=4
(2)(x十3)(3x·4)=(x十2)2;(4)(x—1)(x—2)=x2十8
從以上4例讓學生明白判斷一個方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的最高次數(shù)是否是2。
4.一元二次方程概念的延伸
提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?
引導學生回顧一元二次方程的定義,分析一元二次方程項的情況,啟發(fā)學生運用字母,找到一元二次方程的一般形式
ax2+bx+c=0(a≠0)
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.
3).強調(diào):一元二次方程的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的'是“=”的右邊必須整理成0。
強化概念(課本P6)
1.說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
。1)x2十3x十2=O(2)x2—3x十4=0;(3)3x2-5=0
。4)4x2十3x—2=0;(5)3x2—5=0;(6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的最高次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).
課外作業(yè):略
《一元二次方程》教案 4
教學內(nèi)容:
本節(jié)內(nèi)容是:
人教版義務(wù)教育課程標準實驗教科書數(shù)學九年級上冊
第22章第2節(jié)第1課時。
一、教學目標
(一)知識目標
1、理解求解一元二次方程的實質(zhì)。
2、掌握解一元二次方程的配方法。
。ǘ┠芰δ繕
1、體會數(shù)學的轉(zhuǎn)化思想。
2、能根據(jù)配方法解一元二次方程的一般步驟解一元二次方程。
。ㄈ┣楦袘B(tài)度及價值觀
通過用配方法將一元二次方程變形的過程,讓學生進一步體會轉(zhuǎn)化的思想方法,并增強他們學習數(shù)學的興趣。
二、教學重點
配方法解一元二次方程的一般步驟
三、教學難點
具體用配方法的一般步驟解一元二次方程。
四、知識考點
運用配方法解一元二次方程。
五、教學過程
(一)復習引入
1、復習:
解一元一次方程的一般步驟:(1)去分母;(2)去括號;(3)移項;(4)合并同類項;(5)系數(shù)化為1。
2、引入:
二次根式的.意義:若x2=a (a為非負數(shù)),則x叫做a的平方根,即x=±√a 。實際上,x2 =a(a為非負數(shù))就是關(guān)于x的一元二次方程,求x的平方根就是解一元二次方程。
。ǘ┬抡n探究
通過實際問題的解答,引出我們所要學習的知識點。通過問題吸引學生的注
意力,引發(fā)學生思考。
問題1:
一桶某種油漆可刷的面積為1500dm2李林用這桶油漆剛好刷完10個同樣的正方體形狀的盒子的全部外表面,你能算出盒子的棱長嗎?
問題1重在引出用直接開平方法解一元二次方程。這一問題學生可通過“平方根的意義”的講解過程具體的解答出來,
具體解題步驟:2解:設(shè)正方體的棱長為x dm,則一個正方體的表面積為6xdm2
列出方程:60x2=1500
x2=25
x=±5
因為x為棱長不能為負值,所以x=5
即:正方體的棱長為5dm。
1、用直接開平方法解一元二次方程
。1)定義:運用平方根的定義直接開方求出一元二次方程解。
。2)備注:用直接開平方法解一元二次方程,實質(zhì)是把一個一元二次方程“降次”,轉(zhuǎn)化為兩個一元二次方程來求方程的根。
問題2:
要使一塊矩形場地的長比寬多6cm,并且面積為16㎡,場地的長和寬應(yīng)各為多少?
問題2重在引出用配方法解一元二次方程。而問題2應(yīng)該大部分同學都不會,所以由我來具體的講解。主要通過與完全平方式對比逐步解這個方程。再由這個方程的求解過程師生共同總結(jié)出配方法解一元二次方程的一般步驟。讓學生加深映像。
具體解題步驟:
解:設(shè)場地寬x m,長(x +6)m。
列方程: x(x +6)=16
即: x2+6x-16=0
x2+6x=16
x2+6x+9=16+9
。1)有實根(2)有兩正根(3)一正一負
變式題:m為何實數(shù)值時,關(guān)于x的方程x2?mx?(3?m)?0有兩個大于1的根.
例2. 若8x4+8(a-2)x2-a+5>0對于任意實數(shù)x均成立,求實數(shù)a的取值范圍.
例3.關(guān)于x的方程ax?2x?1?0至少有一個負根,求實數(shù)m的取值范圍。
課堂小練習:
【布置作業(yè)】
省略
《一元二次方程》教案 5
一元二次方程的概念
教材分析:
1.本節(jié)以生活中的實際問題為背景,引出一元二次方程的概念,讓學生掌握一元二次方程的特點,歸納出一元二次方程的一般形式,給出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本節(jié)內(nèi)容是在前面所學方程、一元一次方程、整式、方程的解的基礎(chǔ)上進行學習,也是后面學習二次函數(shù)的一個基礎(chǔ)。
2.這些概念是全章后繼內(nèi)容的基礎(chǔ)。
3.讓學生體會數(shù)學來源于生活,又服務(wù)于生活的基本思想。
學情分析:
1.授課班級學生基礎(chǔ)較差,學生成績參差不齊,差生較多。教學中應(yīng)給予充分思考的時間,注意講練結(jié)合,以學生為本,體現(xiàn)生本課堂的理念。
2.該班級學生在平時訓練中已經(jīng)形成了良好的合作精神和合作氣氛,可以充分發(fā)揮合作的優(yōu)勢,從而充分調(diào)動學生主動性和積極性,使課堂氣氛活躍,讓學生在愉快的環(huán)境中學習。
3.作為該班的班主任,同時又擔任該班的數(shù)學教學,對學生學習情況有比較深入地了解,在解決具體問題的時候可以兼顧不同能力的學生,充分調(diào)動學生的積極性,在練習題的設(shè)計上要針對學生的差異采取分層設(shè)計的方法,著重加強對學生的雙基訓練。
教學目標:
一、知識與技能:
1.理解一元二次方程的概念,能判斷一個方程是一元二次方程。
2.掌握一元二次方程的一般形式,正確認識二次項系數(shù)、一次項系數(shù)及常數(shù)項.
二、過程與方法:
1.引導學生分析實際問題中的數(shù)量關(guān)系,組織學生討論,讓學生類比、抽象出一元二次方程的概念。
2.培養(yǎng)獨立思考,合作交流學,分析問題,解決問題的能力。
三、情感態(tài)度與價值觀:
1.培養(yǎng)學生主動探究知識、自主學習和合作交流的意識.
2.激發(fā)學生學數(shù)學的興趣,體會學數(shù)學的快樂,培養(yǎng)用數(shù)學的意識.
3.讓學生體會數(shù)學來源于生活,又服務(wù)于生活的.基本思想,從而意識到數(shù)學在生活中的作用。
教學重點:一元二次方程的概念及一般形式,利用概念解決實際問題。
教學難點:
1.由實際問題向數(shù)學問題的轉(zhuǎn)化過程.
2.正確識別一般式中的“項”及“系數(shù)”.
3.一元二次方程的特點,如何判斷一個方程是一元二次方程。
教學過程:
一、創(chuàng)設(shè)情境,引入新課
1.問題1:廣安區(qū)為增加農(nóng)民收入,需要調(diào)整農(nóng)作物種植結(jié)構(gòu),計劃無公害蔬菜的產(chǎn)量比翻一番,要實現(xiàn)這一目標,和20無公害蔬菜產(chǎn)量的年平均增長率是多少?(通過放幻燈片引入)
設(shè)無公害蔬菜產(chǎn)量的年平均增長率為x,20的產(chǎn)量為a(a≠0),翻一番的意思就是a變?yōu)?a,那么
(1)用代數(shù)式表示20的產(chǎn)量;
(2)年蔬菜的產(chǎn)量比年增加了2x,對嗎?為什么?你能用代數(shù)式表示出來嗎?
學生思考交流得出方程a(1+x)2=2a
整理得,x2+2x-1=0…………①
2.通過幻燈片引入情境,提出問題:
問題2:廣安市政府在一塊寬200m、長320m的矩形廣場上,修筑寬相等的三條小路(兩條縱向、一條橫向,縱向與橫向垂直),把矩形空地分成大小一樣的6塊,建成小花壇,要使花壇的總面積為57000m2,問小路的寬應(yīng)為多少?
設(shè)小路的寬為x m,則橫向小路的面積如何表示?縱向的呢?重疊部分的面積是多少?小路所占的面積用x的代數(shù)式如何表示?
這個問題的相等關(guān)系是什么?
320×200-(320x+2×200x-2x2)=57000
整理得x2-36x+35=0
誰還能換一種思路考慮這個問題?
把6個小花壇拼起來是一個多長多寬的矩形,由此你會得出什么樣的方程?
(320-2x)(200-x)=57000
整理得x2-36x+35=0…………②
比較一下,哪種方法更巧妙?
3.通過幻燈片引入情景。問題3:廣安重百商場銷售某品牌服裝,若每件盈利50元,則每月可銷售100件。若每件降價1元,則每月可多賣出5件,若每月要盈利6000元,則商場決定每件服裝降價多少?
設(shè)每件降價x元,則現(xiàn)在的盈利為(50-x)元,降價后銷售量為(100+5x)件。可列方程為:(50-x)(100+5x)=6000
《一元二次方程》教案 6
學習目標:
1、使學生會用列一元二次方程的方法解決有關(guān)增長率的應(yīng)用題;
2、進一步培養(yǎng)學生分析問題、解決問題的能力。
學習重點:
會列一元二次方程解關(guān)于增長率問題的應(yīng)用題。
學習難點:
如何分析題意,找出等量關(guān)系,列方程。
學習過程:
一、 復習提問:
列一元二次方程解應(yīng)用題的一般步驟是什么?
二、探索新知
1.情境導入
問題:“坡耕地退耕還林還草”是國家為了解決西部地區(qū)水土流失生態(tài)問題、幫助廣大農(nóng)民脫貧致富的一項戰(zhàn)略措施,某村村長為帶領(lǐng)全村群眾自覺投入“坡耕地退耕還林還草”行動,率先示范.2002年將自家的坡耕地全部退耕,并于當年承包了30畝耕地的還林還草及管理任務(wù),而實際完成的畝數(shù)比承包數(shù)增加的百分率為x,并保持這一增長率不變,2003年村長完成了36.3畝坡耕地還林還草任務(wù),求①增長率x是多少?②該村有50戶人家,每戶均地村長2003年完成的.畝數(shù)為準,國家按每畝耕地500斤糧食給予補助,則國家將對該村投入補助糧食多少萬斤?
2.合作探究、師生互動
教師引導學生分析關(guān)于環(huán)保的情境導入問題,這是一個平均增長率問題,它的基數(shù)是30畝,平均增長的百分率為x,那么第一次增長后,即2002年實際完成的畝數(shù)是30(1+x),第二次增長后,即2003年實際完成的畝數(shù)是30(1+x)2,而這一年村長完成的畝數(shù)正好是36.3畝.
教師引導學生運用方程解決問題:
、30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增長的百分率為10%.
、谌迤赂剡林還草為50×36.3=1 815(畝),國家將補助糧食1 815×500=907 500(斤)=90.75(萬斤).
三、例題學習
說明:題目中求平均每月增長的百分率,直接設(shè)增長的百分率為x,好處在于計算簡便且直接得出所求。
例、某產(chǎn)品原來每件是600元,由于連續(xù)兩次降價,現(xiàn)價為384元,如果兩降價的百分率相同,求每次降價百分之幾?
(小組合作交流教師點撥)
時間 基數(shù) 降價 降價后價錢
第一次 600 600x 600(1-x)
第二次 600(1-x) 600(1-x)x 600(1-x)2
(由學生寫出解答過程)
四、鞏固練習
一商店1月份的利潤是2500元,3月份的利潤達到3000元,這兩個月的利潤平均增長的百分率是多少(精確到0.1%)?
五、課堂總結(jié):
1、善于將實際問題轉(zhuǎn)化為數(shù)學問題,嚴格審題,弄清各數(shù)據(jù)間相互關(guān)系,正確列出方程。
2、注意解方程中的巧算和方程兩個根的取舍問題。
六、反饋練習:
1.某商品計劃經(jīng)過兩個月的時間將售價提高20%,設(shè)每月平均增長率為x,則列出的方程為()
A.x+(1+x)x=20% B.(1+x)2=20%
C.(1+x)2=1.2 D.(1+x%)2=1+20%
2.某工廠計劃兩年內(nèi)降低成本36%,則平均每年降低成本的百分率是()
3.某種藥劑原售價為4元,經(jīng)過兩次降價,現(xiàn)在每瓶售價為2.56元,問平均每次降低百分之幾?
《一元二次方程》教案 7
試講人:XXX
知識點:二元一次方程的概念及一般形式,二次項系數(shù)、一次項系數(shù)、常數(shù)項、判別式、一元二次方程解法
重點、難點:二元一次方程四種解法,直接開平方、配方法、公式法、因式分解法
教學形式:例題演示,加深印象!學完即用,鞏固記憶!你問我答,有來有往!
1、自我介紹:30s
大家下午好!我叫XXX,20XX年畢業(yè)于暨南大學,學的行政管理,現(xiàn)在教的是初中數(shù)學,希望能與大家有一個愉快的下午!
2、一元二次方程概念、系數(shù)、根的判別式:8min30s
我們今天的課堂內(nèi)容是復習一元二次方程。首先請同學們看黑板上的這4個等式,請判斷等式是否是一元二次方程,如果是請說出該一元二次方程的二次項系數(shù)、一次項系數(shù)以及常數(shù)項:
(1)x -10x+9=0 是 1 -10 9
(2)x +2=0 是 1 0 2
(3)ax +bx+c=0 不是 a必須不等于0(追問為什么)
(4)3x -5x=3x 不是 整理式子得-5x=0所以為一元一次方程(追問為什么) 好,同學們都回答得非常好!那么我們所說的一元二次方程究竟是什么呢?我們從它的名字可以得出它的定義!
一元:只含一個未知數(shù)
二次:含未知數(shù)項的最高次數(shù)為2
方程:一個等式
一元二次方程的一般形式為:ax +bx+c=0 (a ≠0)其中,a 為二次項系數(shù)、b 為一次項系數(shù)、c 為常數(shù)項。記住,a 一定不為0,b 、c 都有可能等于0,一元二次方程的形式多種多樣,所以大家要注意找系數(shù)時先將一元二次方程化為一般式! 至于一個一元二次方程有沒有根怎么判斷,有同學能告訴老師嗎?(沒有就自己講),好非常好!我們知道Δ是等于2-4ac 的,當Δ>0時,方程有2個不相同的實數(shù)根;當Δ=0時,方程有兩個相同的實數(shù)根;當Δ<0時,方程無實根。 那我們在求方程根之前先利用Δ判斷一下根的情況,如果小于0,那么就直接判斷無解,如果大于等于0,則需要進一步求方程根。
3、一元二次方程的解法:20min
那說到求方程的根我們究竟學了幾種求一元二次方程根的方法呢?我知道同學們肯定心里有答案,就讓老師為你們一一梳理~
(1)直接開方法
遇到形如x =n的二元一次方程,可以直接使用開方法來求解。若n<0,方程無解;若n=0,則x=0,若n>0, 則x=±n 。同學們能明白嗎?
(2)配方法
大家覺得直接開平方好不好用?簡不簡單?那大家肯定都想用直接開方法來做題,是吧?當然,中考題簡單也不至于這么簡單~但是我們可以通過配方法來將方程往完全平方形式變化。配方法我們通過2道例題來鞏固一下:
簡單的一眼看出來的:x -2x+1=0 (x-1)=0(讓同學回答)
需要變換的:2x +4x-8=0
步驟:將二次項系數(shù)化為1,左右同除2得:x +2x-4=0
將常數(shù)項移到等號右邊得:x +2x=4
左右同時加上一次項系數(shù)一半的平方得:x +2x+1=4+1
所以有方程為:(x+1)=5 形似 x=n
然后用直接開平方解得x+1=±5 x=±5-1
大家能聽懂嗎?現(xiàn)在我們一起來做一道練習題,2min 時間,大家一起報個答案給我!
題目:1/2x-5x-1=0 答案:x=±+5
大家都會做嗎?還需要講解詳細步驟嗎?
(3)講完了直接開方法、配方法之后我們來講一個萬能的公式法。只要知道abc ,沒有公式法求不出來的解,當然啦,除非是無解~
首先,公式法里面的公式大家還記得嗎?
x=(-b ±2-4ac )/2a
這個公式是怎么來的呢?有同學知道的嗎?就是將一般式配方法得到的x 的表達式,大家記住,會用就可以了,如果有興趣可以課后試著用配方法進行推導,也歡迎課后找我探討~這個公式法用起來非常簡單,一找數(shù)、二代入、三化簡。 我們來做一道簡單的例題:
3x -2x-4=0
其中a=3,b=-2,c=-4
帶入公式得:x=((-(-2))± 2) 2-4*(-4)*3/(2*3)
化簡得:x1=(1-)/3 x2=(1+)/3
同學們你們解對了嗎?
使用公式法時要注意的點:系數(shù)的符號要看準、代入和化簡要細心,不要馬失前蹄哈~
(4)今天的.第四種解方程的方法叫因式分解法。因式分解大家會嗎?好那今天由我來帶大家一起見識一下因式分解的魅力!
簡單來說,因式分解就是將多項式化為式子的乘積形式。
比如說ab+ab 可以化成ab (1+a)的乘積形式。
那么對于二元一次方程,我們的目標是要將其化成(mx+a)*(nx+b)=0 這樣就可以解出x=-a/m x=-b/n
我們一起做一個例題鞏固一下:4x +5x+1=0
則可以化成4x +x+4x+1=0 x(4x+1)+(4x+1)=0 (x+1)(4x+1)=0
所以有x=-1 x=-1/4
同學們都能明白嗎?就是找出公因式,將多項式化為因式的乘積形式從而求解。 練習題:x -5x+6=0 x=2 x=3
x-9=0 x=3 x=-3
4、總結(jié):1min
好,復習完了二元一次方程我們熟知它的概念。只含有一個未知數(shù)且未知數(shù)項最高次數(shù)為2的等式,叫做二元一次方程。我們還要會找abc 系數(shù),會用Δ=b-4ac 來判別方程實根的情況。還需要熟悉四種方程的解法,這是中考的重點考察內(nèi)容。當然,具體用哪一種解題方法就需要結(jié)合具體的題目來選擇了。如果形式簡單可以直接用開平方則直接用開平方,否則首選因式分解法,再者選擇配方法,最后的底線是公式法~當然每個人的習慣不一樣,熟悉的方法也不一樣,同學們可以自行選擇萬無一失的方法,像老師不到萬不得已絕對不用公式法,哈哈哈哈~好啦,上完這一個復習課希望大家都能有收獲!
《一元二次方程》教案 8
教學目的
使學生掌握有關(guān)面積和體積方面以及“藥液問題”的一元二次方程應(yīng)用題的解法.提高學生化實際問題為數(shù)學問題的能力.
教學重點、難點
重點:用圖示法分析題意列方程.
難點:將實際問題轉(zhuǎn)化為對方程的求解問題.
教學過程 復習提問
本小節(jié)第一課我們介紹了什么問題?
引入新課
今天我們進一步研究有關(guān)面積和體積方面以及“藥液問題”的一元二次方程的應(yīng)用題及其解法.
新課
例1 如圖1,有一塊長25c,寬15c的長方形鐵皮.如果在鐵皮的四個角上截去四個相同的小正方形,然后把四邊折起來,做成一個底面積為231c2的無蓋長方體盒子,求截去的小正方形的邊長應(yīng)是多少?
分析:如圖1,考慮設(shè)截去的小正方形邊長為xc,則底面的長為(25-2x)c,寬為(15-2x)c,由此,知由長×寬=矩形面積,可列出方程.
解:設(shè)小正方形的邊長為xc,依題意,得(25-2x)(15-2x)=231,
即x2-20x+36=0,
解得x1=2,x2=18(舍去).
答:截去的小正方形的邊長為2c.
例2 一個容器盛滿藥液20升,第一次倒出若干升,用水加滿;第二次倒出同樣的升數(shù),這時容器里剩下藥液5升,問每次倒出藥液多少升?
∴x=10.
答:第一、二次倒出藥液分別為10升,5升.
練習 P41 3、4
歸納總結(jié)
1.注意充分利用圖示列方程解有關(guān)面積和體積的應(yīng)用題.
2.要注意關(guān)于“藥液問題”應(yīng)用題,列方程要以“剩下藥液”為依據(jù)列式.
布置作業(yè):習題22.3 8、9題
課后反思
第三課時
教學目的'
使學生掌握列一元二次方程解關(guān)于增長率的應(yīng)用題的方法.并進一步培養(yǎng)學生分析問題和解決問題的能力.
教學重點、難點
重點:弄清有關(guān)增長率的數(shù)量關(guān)系.
難點:利用數(shù)量關(guān)系列方程的方法.
教學過程
復習提問
1.問題:(1)某廠生產(chǎn)某種產(chǎn)品,產(chǎn)品總數(shù)為1600個,合格品數(shù)為1563個,合格率是多少?
(2)某種田農(nóng)戶用800千克稻谷碾出600千克大米,問出米率是多少?
(3)某商店二月份的營業(yè)額為3.5萬元,三月份的營業(yè)額為5萬元,三月份與二月份相比,營業(yè)額的增長率是多少?
新課
例1 某鋼鐵廠去年一月份某種鋼的產(chǎn)量為5000噸,三月份上升到7200噸,這兩個月平均每月增產(chǎn)的百分率是多少?
分析:用譯式法討論列式
一月份產(chǎn)量為5000噸,若月增長率為x,則二月份比一月份增產(chǎn)5000x噸.
二月份產(chǎn)量為(5000+5000x)=5000(1+x)噸;
三月份比二月份增產(chǎn)5000(1+x)x噸,
三月份產(chǎn)量為5000(1+x)+5000(1+x)x=5000(1+x)2噸.再根據(jù)題意,即可列出方程.
解:設(shè)平均每月增長的百分率為x,根據(jù)題意,
得5000(1+x)2=7200,即(1+x)2=1.44,
∴1+x=±1.2,x1=0.2,x2=-2.2(不合題意,舍去).
答:平均每月增長率為20%.
例2 某印刷廠一月份印刷了科技書籍50萬冊,第一季度共印182萬冊,問二、三月份平均每月的增長率是多少?
解:設(shè)每月增長率為x,依題意得
50+50(1+x)+50(1+x)2=182,
答:二、三月份平均月增長率為20%.
歸納總結(jié)
依題意,依增長情況列方程是此類題目解題的關(guān)鍵.
布置作業(yè):習題22.3 7題
《一元二次方程》教案 9
一、教學目標
1.使學生會用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題。
2.通過列方程解應(yīng)用問題,進一步體會提高分析問題、解決問題的能力。
3.通過列方程解應(yīng)用問題,進一步體會代數(shù)中方程的思想方法解應(yīng)用問題的優(yōu)越性。
二、重點·難點·疑點及解決辦法
1.教學重點:會用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題。
2.教學難點:根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系。
3.教學疑點:學生對列一元二次方程解應(yīng)用問題中檢驗步驟的理解。
4.解決辦法:列方程解應(yīng)用題,就是先把實際問題抽象為數(shù)學問題,然后由數(shù)學問題的解決而獲得對實際問題的解決。列方程解應(yīng)用題,最重要的'是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當?shù)卦O(shè)出未知數(shù),準確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。
三、教學過程
1.復習提問
(1)列方程解應(yīng)用問題的步驟?
、賹忣},②設(shè)未知數(shù),③列方程,④解方程,⑤答。
。2)兩個連續(xù)奇數(shù)的表示方法是,(n表示整數(shù))
2.例題講解
例1 兩個連續(xù)奇數(shù)的積是323,求這兩個數(shù)。
分析:(1)兩個連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法)a.設(shè)較小的奇數(shù)為x,則另一奇數(shù)為,b.設(shè)較小的奇數(shù)為,則另一奇數(shù)為;c.設(shè)較小的奇數(shù)為,則另一個奇數(shù)。
以上分析是在教師的引導下,學生回答,有三種設(shè)法,就有三種列法,找三位學生使用三種方法,然后進行比較、鑒別,選出最簡單解法。
解法(一) 設(shè)較小奇數(shù)為x,另一個為,
據(jù)題意,得
整理后,得
解這個方程,得。
由得,由得,
答:這兩個奇數(shù)是17,19或者-19,-17。
解法(二) 設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得
整理后,得
解這個方程,得。
當時,
當時,。
答:兩個奇數(shù)分別為17,19;或者-19,-17。
《一元二次方程》教案 10
【教學目標】
(1)理解一元二次方程的概念
。2)掌握一元二次方程的`一般形式,會判斷一元二次方程的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
(2)會用因式分解法解一元二次方程
【教學重點】一元二次方程的概念、一元二次方程的一般形式
【教學難點】因式分解法解一元二次方程
【教學過程】
(一)創(chuàng)設(shè)情景,引入新課
實際例子引入:列出的方程分別為X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0
由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念。
。ǘ┬率
1:一元二次方程的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)
2:一元二次方程的一般形式(形如aX+bX+c=0)
任一個一元二次方程都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零
3:講解例子
4:利用因式分解法解一元二次方程
5:講解例子
6:一般步驟
。ㄈ┬〗Y(jié)
(四)布置作業(yè)
《一元二次方程》教案 11
一、教學目標
【知識與技能】
掌握應(yīng)用因式分解的方法,會正確求一元二次方程的解。
【過程與方法】
通過利用因式分解法將一元二次方程轉(zhuǎn)化成兩個一元一次方程的過程,體會“等價轉(zhuǎn)化”“降次”的數(shù)學思想方法。
【情感態(tài)度價值觀】
通過探討一元二次方程的解法,體會“降次”化歸的思想,逐步養(yǎng)成主動探究的精神與積極參與的意識。
二、教學重難點
【教學重點】
運用因式分解法求解一元二次方程。
【教學難點】
發(fā)現(xiàn)與理解分解因式的`方法。
三、教學過程
(一)導入新課
復習回顧:和學生一起回憶平方差、完全平方公式,以及因式分解的常用方法。
(二)探究新知
問題1:一個數(shù)的平方與這個數(shù)的3倍有可能相等嗎?如果相等,這個數(shù)是幾?你是怎樣求出來的?
學生小組討論,探究后,展示三種做法。
問題:小穎用的什么法?——公式法
小明的解法對嗎?為什么?——違背了等式的性質(zhì),x可能是零。
小亮的解法對嗎?其依據(jù)是什么——兩個數(shù)相乘,如果積等于零,那么這兩個數(shù)中至少有一個為零。
問題2:學生探討哪種方法對,哪種方法錯;錯的原因在哪?你會用哪種方法簡便]
師引導學生得出結(jié)論:
如果a·b=0,那么a=0或b=0
(如果兩個因式的積為零,則至少有一個因式為零,反之,如果兩個因式有一個等于零,它們的積也就等于零。)
“或”有下列三層含義
、賏=0且b≠0②a≠0且b=0③a=0且b=0
問題3:
(1)什么樣的一元二次方程可以用因式分解法來解?
(2)用因式分解法解一元二次方程,其關(guān)鍵是什么?
(3)用因式分解法解一元二次方程的理論依據(jù)是什么?
(4)用因式分解法解一元二方程,必須要先化成一般形式嗎?
因式分解法:當一元二次方程的一邊是0,而另一邊易于分解成兩個一次因式的乘積時,我們就可以用分解因式的方法求解。這種用分解因式解一元二次方程的方法稱為因式分解法。
老師提示:1.用分解因式法的條件是:方程左邊易于分解,而右邊等于零;2.關(guān)鍵是熟練掌握因式分解的知識;3.理論依舊是“如果兩個因式的積等于零,那么至少有一個因式等于零!
(三)鞏固提高
1.用分解因式法解下列方程嗎?
總結(jié):右化零,左分解,兩因式,各求解。
(四)小結(jié)作業(yè)
用因式分解法求解一元二次方程的步驟:
1.方程化為一般形式;
2.方程左邊因式分解;
3.至少一個一次因式等于零得到兩個一元一次方程;
4.兩個一元一次方程的解就是原方程的解。
【《一元二次方程》教案】相關(guān)文章:
一元二次方程教案01-15
一元二次方程的解法教案12-30
數(shù)學教案-一元二次方程05-02
一元二次方程05-02
數(shù)學教案-一元二次方程的解法05-02
一元二次方程的解法05-02