国产真实乱子伦精品,国产精品100页,美女网站色免费,国产白嫩美女免费观看,欧美精品亚洲,欧美韩国xxx,欧美性猛交xxxxxxxx软件

初二數(shù)學(xué)教案

時間:2024-05-06 11:27:19 其它教案 我要投稿

初二數(shù)學(xué)教案【精品15篇】

  作為一名老師,編寫教案是必不可少的,教案有助于順利而有效地開展教學(xué)活動。我們該怎么去寫教案呢?下面是小編精心整理的初二數(shù)學(xué)教案,歡迎閱讀與收藏。

初二數(shù)學(xué)教案【精品15篇】

初二數(shù)學(xué)教案1

  知識與技能

  1.了解分式的基本性質(zhì),掌握分式的約分和通分法則。掌握分式的四則運(yùn)算。

  2.會用待定系數(shù)法求反比例函數(shù)的解析式,能利用函數(shù)性質(zhì)分析和解決一些簡單的實(shí)際問題。

  3.體驗(yàn)勾股定理的探索過程,會運(yùn)用勾股定理解決簡單問題。會運(yùn)用勾股定理的逆定理判定直角三角形。

  4.探索并掌握平行四邊形、矩形、菱形、正方形、等腰梯形的有關(guān)性質(zhì)和常用判定方法,并運(yùn)用這些知識進(jìn)行有關(guān)的.證明和計(jì)算。

  5.進(jìn)一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計(jì)量的統(tǒng)計(jì)意義,會計(jì)算極差和方差,理解它們的統(tǒng)計(jì)意義,會用它們表示數(shù)據(jù)的波動情況。

  過程與方法

  進(jìn)一步培養(yǎng)學(xué)生的合情推理能力和發(fā)展學(xué)生邏輯思維能力和推理論證的表達(dá)能力;解決一些實(shí)際問題,體會化歸思想和函數(shù)的變化與對應(yīng)的思想;養(yǎng)成用數(shù)據(jù)說話的習(xí)慣和實(shí)事求是的科學(xué)態(tài)度;培養(yǎng)學(xué)生的探究能力、數(shù)學(xué)歸納能力,在活動中培養(yǎng)學(xué)生的合作交流能力;逐步形成獨(dú)立思考,主動探索的習(xí)慣。

  情感、態(tài)度與價(jià)值觀

  豐富學(xué)生從事數(shù)學(xué)活動的經(jīng)驗(yàn)和體驗(yàn),通過對問題的共同探討,培養(yǎng)學(xué)生的協(xié)作精神,通過對知識方法的總結(jié),培養(yǎng)反思的習(xí)慣,和理性思維。培養(yǎng)學(xué)生面對教學(xué)活動中的困難,能通過合作交流解決遇到的困難。

初二數(shù)學(xué)教案2

  一、教學(xué)目標(biāo)

  1.掌握矩形的定義,知道矩形與平行四邊形的關(guān)系.

  2.掌握矩形的性質(zhì)定理.

  3.使學(xué)生能應(yīng)用矩形定義、性質(zhì)等知識,解決簡單的證明題和計(jì)算題,進(jìn)一步培養(yǎng)學(xué)生的分析能力.

  4.通過性質(zhì)的學(xué)習(xí),體會矩形的應(yīng)用美.

  二、教法設(shè)計(jì)

  觀察、啟發(fā)、總結(jié)、提高,類比探討,討論分析,啟發(fā)式.

  三、重點(diǎn)、難點(diǎn)及解決辦法

  1.教學(xué)重點(diǎn):矩形的性質(zhì)及其推論.

  2.教學(xué)難點(diǎn):矩形的本質(zhì)屬性及性質(zhì)定理的綜合應(yīng)用.

  四、課時安排

  1課時

  五、教具學(xué)具準(zhǔn)備

  教具(一個活動的平行四邊形),投影儀及膠片,常用畫圖工具

  六、師生互動活動設(shè)計(jì)

  教具演示、創(chuàng)設(shè)情境,觀察猜想,推理論證

  七、教學(xué)步驟

  【復(fù)習(xí)提問】

  什么叫平行四邊形?它和四邊形有什么區(qū)別?

  【引入新課】

  我們已經(jīng)知道平行四邊形是特殊的.四邊形,因此平行四邊形除具有四邊形的性質(zhì)外,還有它的特殊性質(zhì),同樣對于平行四邊形來說,也有特殊情況即特殊的平行四邊形, 堂課我們就來研究一種特殊的平行四邊形矩形(寫出課題).

  【講解新課】

  制一個活動的平行四邊形教具,堂上進(jìn)行演示圖,使學(xué)生注意觀察四邊形角的變化,當(dāng)變到一個角是直角時,指出這時平行四邊形是矩形,使學(xué)生明確矩形是特殊的平行四邊形(特殊之處就在于一個角是直角,深刻理解矩形與平行四邊形的聯(lián)系和區(qū)別).

  矩形的性質(zhì):

  既然矩形是一種特殊的平行四邊形,就應(yīng)具有平行四邊形性質(zhì),同時矩形又是特殊的平行四邊形,比平行四邊形多了一個角是直角的條件,因而它就增加了一些特殊性質(zhì).

  繼續(xù)演示教具,當(dāng)它變成矩形時,學(xué)生容易看到它的四個角都是直角;它的對角線也相等(寫出這兩個結(jié)論),指出觀察出來的結(jié)論不能做為定理,需要證明.引導(dǎo)學(xué)生利用平行四邊形角的性質(zhì)證明得出.

  矩形性質(zhì)定理1:矩形的四個角都是直角.

  矩形性質(zhì)定理2:矩形對角線相等.

  由矩形性質(zhì)定理2我們可以得到

  推論:直角三角形斜邊上的中線等于斜邊的一半.

  (這實(shí)際上是 △的一個重要性質(zhì),即 △斜邊中點(diǎn)到三頂點(diǎn)的距離相等,它在求線段長或線段部分關(guān)系時經(jīng)常用到)

  例1 已知如圖1 矩形 的兩條對角線相交于點(diǎn), , ,求矩形對角線的長.(按教材的格式)

  (強(qiáng)調(diào)這種計(jì)算題的解題格式,防止學(xué)生離開幾何元素之間的關(guān)系,而單純進(jìn)行代數(shù)計(jì)算)

  【總結(jié)、擴(kuò)展】

  1.小結(jié):(用投影打出)

  (1)矩形、平行四邊形、四邊形從屬關(guān)系如圖.

  (2)矩形性質(zhì).

  1.具有平行四邊形的所有性質(zhì).

  2.特有性質(zhì):四個角都是直角,對角線相等.

  3.思考題:已知如圖, 是矩形 對角線交點(diǎn), 平分 , ,求 的度數(shù)

  八、布置作業(yè)

  教材P158中2、5,P195中7.

  九、板書設(shè)計(jì)

  十、隨堂練習(xí)

  教材P146中1、2、3、4

初二數(shù)學(xué)教案3

  教學(xué)目標(biāo):

  1、了解什么是比例,能夠正確地表示比例關(guān)系。

  2、掌握比例的性質(zhì),能夠靈活地運(yùn)用比例的性質(zhì)進(jìn)行解題。

  3、通過練習(xí),提高解決實(shí)際問題的能力。

  教學(xué)重點(diǎn):

  1、比例的概念及表示方法。

  2、比例的性質(zhì)。

  3、比例的應(yīng)用。

  教學(xué)難點(diǎn):

  1、比例的應(yīng)用。

  2、解決實(shí)際問題的能力。

  教學(xué)過程:

  一、引入(5分鐘)

  1、教師出示一張比例圖,讓學(xué)生猜測比例的含義。

  2、學(xué)生回答后,教師講解比例的概念及表示方法。

  二、講解(15分鐘)

  1、教師講解比例的性質(zhì)。

  2、教師通過例題讓學(xué)生掌握比例的應(yīng)用。

  三、練習(xí)(30分鐘)

  1、教師出示一些比例題目,讓學(xué)生在課堂上完成。

  2、學(xué)生完成后,教師講解答案及解題方法。

  四、鞏固(10分鐘)

  1、教師出示一些實(shí)際問題,讓學(xué)生運(yùn)用比例的知識進(jìn)行解決。

  2、學(xué)生完成后,教師講解答案及解題方法。

  五、作業(yè)(5分鐘)

  1、教師布置相關(guān)作業(yè)。

  2、學(xué)生完成后,交給教師批改。

  教學(xué)反思:

  通過本節(jié)課的.教學(xué),學(xué)生們對比例的概念及表示方法有了更深入的了解,掌握了比例的性質(zhì),并通過練習(xí)提高了解決實(shí)際問題的能力。但是,教學(xué)過程中還存在一些問題,比如有些學(xué)生對比例的應(yīng)用還不夠熟練,需要加強(qiáng)練習(xí)。因此,下一節(jié)課需要針對這些問題進(jìn)行更加深入的講解和練習(xí)。

初二數(shù)學(xué)教案4

  教學(xué)目標(biāo)

  1.知道梯形、等腰梯形、直角梯形的有關(guān)概念;能說出并證明等腰梯形的兩個性質(zhì);等腰梯形同一底上的兩個角相等;兩條對角線相等。

  2.會運(yùn)用梯形的有關(guān)概念和性質(zhì)進(jìn)行有關(guān)問題的論證和計(jì)算。

  3.通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會圖形變換的方法和轉(zhuǎn)化的思想。

  教學(xué)模式問題解決教學(xué)

  教學(xué)過程

  想一想:

  什么樣的四邊形是平行四邊形?平行四邊形有哪些性質(zhì)?學(xué)生回答后,教師板書以下關(guān)系圖中的有關(guān)部分:

  畫一畫:

  畫一個梯形,并指出梯形的上、下底,畫出梯形的高。

  問題教學(xué)

  問題1:根據(jù)剛才的畫圖,請給梯形下一個定義,并說說梯形與平行四邊形的區(qū)別和聯(lián)系。(說明與建議:(l)讓學(xué)生自己給梯形下定義,有助于訓(xùn)練學(xué)生觀察、概括和語言表述的能力。如果學(xué)生定義時,遺漏了"另一組對邊不平行"教師可舉及例(2)對梯形的定義,還可以讓學(xué)生討論以下問題:一組對邊平行且這組對邊不相等的四邊形是梯形嗎?為什么?教師可用反證法的思想說理。然后,板書完成"想一想"中的`關(guān)系圖,并結(jié)合圖表指出:梯形和平行四邊形的區(qū)別和聯(lián)系。(3)梯形的高是指夾在兩底間的公垂線段,在計(jì)算面積時高即為上下兩底(平行線)間的距離,也就是夾在兩底間的公垂線段的長度。畫高時可以從上底任一點(diǎn)向下底作垂線段,一般常從上底的兩端向下底作垂線段可方便地構(gòu)造直角三角形,便于計(jì)算。)

  問題2:如圖4.9-1,在(1)中:四邊形ABCD的AD∥BC,ABCD,且CD⊥BC;在(2)中,四邊形ABCD的AD∥BC,ABCD,且AB=CD。請你給這兩種四邊形命名。(說明與建議:學(xué)生說出圖(l)的四邊形是直角梯形,圖(2)是等腰梯形,通常不會有困難;教師應(yīng)進(jìn)一步引導(dǎo)學(xué)生討論,在圖(1)中CD⊥BC,那么CD⊥AD嗎?(CD⊥AD,且指出:CD就是直角梯形的高)當(dāng)CD⊥BC時,另一腰AB可以垂直BC嗎?為什么?(若AB⊥BC,那么四邊形ABCD就成為矩形了,不再是梯形。)在圖(2)中,上底AD與下底BC能相等嗎?(不能,否則四邊形ABCD成為平行四邊形,不再是梯形。)

  練一練:課本例1后練習(xí)第l、2題。

  問題3:觀察圖4.9-2中的等腰梯形ABCD,猜想它還可能具有哪些特殊性質(zhì)。并能證明你的猜想嗎?

  說明與建議:(l)教師要用微笑、點(diǎn)頭、贊嘆、激勵的表情和話語來鼓勵學(xué)生大膽猜想。(2)學(xué)生可能提出以下猜想:∠B=∠C,∠A=∠D,∠A+∠B=,∠C+∠D=,是軸對稱圖形等等。教師要引導(dǎo)學(xué)生關(guān)注等腰梯形特有的性質(zhì)---等腰梯形的底角相等。(3)如何證明這個猜想,可讓學(xué)生自己思考、探索、交流,教師給以引導(dǎo),鼓勵證明多樣化,如課本第174頁的證法。教師可提醒學(xué)生證明過程中用到了"夾在平行線間的平行線段相等"這一性質(zhì)。并指出:這種證法的實(shí)質(zhì)是把一腰平移,從而構(gòu)造出等腰三角形;對于如圖4.9-2(作AE⊥BC,DF⊥BC)所示的證法,教師可指出:通過作梯形的兩條高,可以構(gòu)造出兩個全等的直三角形等。

  問題4:如何證明等腰梯形是軸對稱圖形呢?(說明與建議:可讓學(xué)生用折紙的方法,確認(rèn)等腰梯形是軸對稱圖形;教學(xué)中,還可引導(dǎo)學(xué)生借助等腰三角形的軸對稱性加以證明,如圖4.9-3,延長等腰梯形兩腰BA、CD相交于點(diǎn)E,易證△AED和△EBC都是等腰三角形。EF⊥BC,則EF⊥AD,EF所在的直線是兩個等腰三角形EAD、EBC的對稱軸。由軸對稱圖形可知,也是等腰梯形ABCD的對稱軸。因此,等腰梯形是軸對稱圖形,有一條對稱軸,是過兩底中點(diǎn)的直線。)

  例題解析(課本例1)說明:本例的結(jié)論,為學(xué)生在討論"問題3"時已提及,則可由學(xué)生自已完成證明,并概括成為一個文字命題。如學(xué)生討論問題3時未提及,則可由教師引導(dǎo)學(xué)生猜想,然后再完成證明。

  課堂練習(xí)1.課本例1后練習(xí)第3題。2.如圖4.9-4,已知等腰梯形ABCD的腰長為5cm,上、下底長分別是6cm和12cm,求梯形的面積。(方法一,過點(diǎn)C作CE∥AD,再作等腰三角形BCE的高CF,可知CF=4cm。然后用梯形面積公式求解;方法二,過點(diǎn)C和D分別作高CF、DG,可知,從而在Rt△AGD中求出高DG=4cm。)

初二數(shù)學(xué)教案5

  教學(xué)目標(biāo)

  1、初步掌握頻率分布直方圖的概念,能繪制有關(guān)連續(xù)型統(tǒng)計(jì)量的直方圖;

  2、讓學(xué)生進(jìn)一步經(jīng)歷數(shù)據(jù)的整理和表示的過程,掌握繪制頻率分布直方圖的方法;

  教學(xué)重點(diǎn)

  掌握頻率分布直方圖概念及其應(yīng)用;

  教學(xué)難點(diǎn)

  繪制連續(xù)統(tǒng)計(jì)量的直方圖

  教學(xué)過程

 、瘢岢鰡栴},創(chuàng)設(shè)情境,引入新課:

  問題:我們班準(zhǔn)備從63名同學(xué)中挑選出身高相差不多的'40名同學(xué)參加比賽,那么這個想法可以實(shí)現(xiàn)嗎?應(yīng)該選擇身高在哪個范圍的學(xué)生參加?

  63名學(xué)生的身高數(shù)據(jù)如下:

  158158160168159159151158159

  168158154158154169158158158

  159167170153160160159159160

  149163163162172161153156162

  162163157162162161157157164

  155156165166156154166164165

  156157153165159157155164156

  解:(確定組距)最大值為172,最小值為149,他們的差為23

 。ㄉ砀選的變化范圍在23厘米)

 。ǚ纸M劃記)頻數(shù)分布表:

  身高(x)劃記頻數(shù)(學(xué)生人數(shù))

  149≤x

  152≤x

  155≤x

  158≤x

  161≤

  164≤x

  167≤x

  170≤x

  從表中看,身高在155≤x

 。ɡL制頻數(shù)分布直方圖如課本P72圖12.2-3)

  探究:上面對數(shù)據(jù)分組時,組距取3,把數(shù)據(jù)分成8個組,如果組距取2或4,那么數(shù)據(jù)應(yīng)分成幾個組,這樣做能否選出身高比較整齊的隊(duì)員?

  分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊(duì)員。

  歸納:組距和組數(shù)的確定沒有固定的標(biāo)準(zhǔn),要憑借經(jīng)驗(yàn)和研究的具體問題來決定,通常數(shù)據(jù)越多,分成的組數(shù)也越多,當(dāng)數(shù)據(jù)在100個以內(nèi)時,根據(jù)數(shù)據(jù)的多少通常分為5~12個組。

  我們還可以用頻數(shù)折線圖來描述頻數(shù)分布的情況。頻數(shù)折線圖可以在頻數(shù)分布直方圖的基礎(chǔ)上畫出來。

  首先取直方圖中每一個長方形上邊的中草藥點(diǎn),然后在橫軸上取兩個頻數(shù)為0的點(diǎn),在上方圖的左邊。147、5,0),在直方圖的右邊取點(diǎn)(174、5,0),將這些點(diǎn)用線段依次連接起來,就得到頻數(shù)折線圖。

  頻數(shù)折線圖也可以不通過直方圖直接畫出。

  根據(jù)表12.2-2,求了各個小組兩個端點(diǎn)的平均數(shù),而這些平均數(shù)稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數(shù),以各小組的組中值為橫坐標(biāo),各小組對應(yīng)的"頻數(shù)為縱坐標(biāo)描點(diǎn),另外再在橫軸上取兩個點(diǎn),依次連接這些點(diǎn),就得到頻數(shù)分布折線圖如課本P73圖。

  II課堂小結(jié):

 。1)怎樣制作頻數(shù)分布直方圖和頻數(shù)分布折線圖

 。2)組距和組數(shù)沒有確定標(biāo)準(zhǔn),當(dāng)數(shù)據(jù)在1000個以內(nèi)時,通常分成5~12組

 。3)如果取個長方形上邊的中點(diǎn),可以得到頻數(shù)折線圖

 。4)求各小組兩個斷點(diǎn)的平均數(shù),這些平均數(shù)叫組中值。

初二數(shù)學(xué)教案6

  教學(xué)目標(biāo)

  知識與技能目標(biāo)

  1.經(jīng)歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。

  2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。

  3.逐步掌握說理的基本方法。

  過程與方法目標(biāo)

  1.在探索平行四邊形的判別條件的過程中,發(fā)展學(xué)生的合情推理意識,主動探索的習(xí)慣。

  2.鼓勵學(xué)生用多種方法進(jìn)行說理。

  情感與態(tài)度目標(biāo)

  1.培養(yǎng)學(xué)生探索創(chuàng)新的.能力,開拓學(xué)生思路,發(fā)展學(xué)生的思維能力。

  2.培養(yǎng)學(xué)生合作學(xué)習(xí),增強(qiáng)學(xué)生的自我評價(jià)意識。

  教材分析

  教材通過創(chuàng)設(shè)“釘制平行四邊形框架”這一情境,便于學(xué)生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學(xué)生自己準(zhǔn)備,由學(xué)生自我操作。也可由教師演示。

  教學(xué)重點(diǎn):平行四邊形的判別方法。

  教學(xué)難點(diǎn):利用平行四邊形的判別方法進(jìn)行正確的說理。

  學(xué)情分析

  初二學(xué)生對平面圖形的認(rèn)識能力正在形成,抽象思維還不夠,學(xué)習(xí)幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內(nèi)容的學(xué)習(xí),要引導(dǎo)學(xué)生學(xué)會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質(zhì)定理。

  教學(xué)流程

  一、創(chuàng)設(shè)情境,引入新課

  師:請同學(xué)們拿出課前準(zhǔn)備的小木條,幫助小明的爸爸釘制平行四邊形的框架。

  學(xué)生活動:學(xué)生按小組進(jìn)行探索。

初二數(shù)學(xué)教案7

  初二上冊數(shù)學(xué)知識點(diǎn)總結(jié):等腰三角形

  一、等腰三角形的性質(zhì):

  1、等腰三角形兩腰相等.

  2、等腰三角形兩底角相等(等邊對等角)。

  3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.

  4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。

  5、等邊三角形的'性質(zhì):

  ①等邊三角形三邊都相等.

 、诘冗吶切稳齻內(nèi)角都相等,都等于60°

  ③等邊三角形每條邊上都存在三線合一.

 、艿冗吶切问禽S對稱圖形,對稱軸是三線合一(3條).

  6.基本判定:

 、诺妊切蔚呐卸ǎ

  ①有兩條邊相等的三角形是等腰三角形.

 、谌绻粋三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).

 、频冗吶切蔚呐卸ǎ

 、偃龡l邊都相等的三角形是等邊三角形.

 、谌齻角都相等的三角形是等邊三角形.

 、塾幸粋角是60°的等腰三角形是等邊三角形.

初二數(shù)學(xué)教案8

  1、教材分析

 。1)知識結(jié)構(gòu):

 。2)重點(diǎn)和難點(diǎn)分析:

  重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理。因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識,對后繼知識的學(xué)習(xí)起著重要的作用。

  難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用。在前面講解三角形的概念時,因?yàn)槿切蔚娜齻頂點(diǎn)確定一個平面,所以三個頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內(nèi)這個條件,這幾個字的意思學(xué)生不好理解,所以是難點(diǎn)。

  2、教法建議

 。1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學(xué)生認(rèn)識到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

 。2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的'邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對比著指給學(xué)生看,讓學(xué)生明確這些概念。

 。3)因?yàn)樵谌切沃袥]有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決。結(jié)合圖形,讓學(xué)生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學(xué)生加深對對角線的作用的認(rèn)識。

 。4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡單的、已知的問題。

  一、素質(zhì)教育目標(biāo)

 。ㄒ唬┲R教學(xué)點(diǎn)

  1、使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和外角和定理。

  2、了解四邊形的不穩(wěn)定性及它在實(shí)際生產(chǎn),生活中的應(yīng)用。

 。ǘ┠芰τ(xùn)練點(diǎn)

  1、通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力。

  2、通過推導(dǎo)四邊形內(nèi)角和定理,對學(xué)生滲透化歸思想。

  3、會根據(jù)比較簡單的條件畫出指定的四邊形。

  4、講解四邊形外角概念和外角定理時,聯(lián)系三角形的有關(guān)概念對學(xué)生滲透類比思想。

 。ㄈ┑掠凉B透點(diǎn)

  使學(xué)生認(rèn)識到這些四邊形都是常見的,研究他們都有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)新知識的興趣。

 。ㄋ模┟烙凉B透點(diǎn)

  通過四邊形內(nèi)角和定理數(shù)學(xué),滲透統(tǒng)一美,應(yīng)用美。

  二、學(xué)法引導(dǎo)

  類比、觀察、引導(dǎo)、講解

  三、重點(diǎn)難點(diǎn)疑點(diǎn)及解決辦法

  1、教學(xué)重點(diǎn):四邊形及其有關(guān)概念;熟練推導(dǎo)四邊形外角和這一結(jié)論,并用此結(jié)論解決與四邊形內(nèi)外角有關(guān)計(jì)算問題。

  2、教學(xué)難點(diǎn):理解四邊形的有關(guān)概念中的一些細(xì)節(jié)問題;四邊形不穩(wěn)定性的理解和應(yīng)用。

  3、疑點(diǎn)及解決辦法:四邊形的定義中為什么要有在平面內(nèi),而三角形的定義中就沒有呢?根據(jù)指定條件畫四邊形,關(guān)鍵是要分析好作圖的順序,一般先作一個角。

  四、課時安排

  2課時

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片、四邊形模型、常用畫圖工具

  六、師生互動活動設(shè)計(jì)

  教師引入新課,學(xué)生觀察圖形,類比三角形知識導(dǎo)出四邊形有關(guān)概念;師生共同推導(dǎo)四邊形內(nèi)角和的定理,學(xué)生鞏固內(nèi)角和定理和應(yīng)用;共同分析探索外角和定理,學(xué)生閱讀相關(guān)材料。

  第一課時

  七、教學(xué)步驟

  【復(fù)習(xí)引入】

  在小學(xué)里已經(jīng)對四邊形、長方形、平形四邊形的有關(guān)知識有所了解,但還很膚淺,這一

  章我們將比較系統(tǒng)地學(xué)習(xí)各種四邊形的性質(zhì)和判定分析它們之間的關(guān)系,并運(yùn)用有關(guān)四邊形的知識解決一些新問題。

  【引入新課】

  用投影儀打出課前畫好的教材中P119的圖。

  師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學(xué)生找上述圖形,最后教師用彩色筆勾出幾個圖形)。

  【講解新課】

  1、四邊形的有關(guān)概念

  結(jié)合圖形講解四邊形,四邊形的邊、頂點(diǎn)、角,凸四邊形,四邊形的對角線(同時學(xué)生在書上畫出上述概念),講解這些概念時:

 。1)要結(jié)合圖形。

  (2)要與三角形類比。

 。3)講清定義中的關(guān)鍵詞語。如四邊形定義中要說明為什么加上同一平面內(nèi)而三角形的定義中為什么不加同一平面內(nèi)(三角形的三個頂點(diǎn)一定在同一平面內(nèi),而四個點(diǎn)有可能不在同一平面內(nèi),如圖42中的點(diǎn)。我們現(xiàn)在只研究平面圖形,故在定義中加上在同一平面內(nèi)的限制)。

  (4)強(qiáng)調(diào)四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形來解(滲透化歸思想),并觀察圖4—3用對角線分成的這些三角形與原四邊形的關(guān)系。

 。5)強(qiáng)調(diào)四邊形的表示方法,一定要按頂點(diǎn)順序書寫四邊形如圖41。

 。6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結(jié)論如圖4—4,圖4—5。

  2、四邊形內(nèi)角和定理

  教師問:

  (1)在圖4—3中對角線AC把四邊形ABCD分成幾個三角形?

 。2)在圖4—6中兩條對角線AC和BD把四邊形分成幾個三角形?

 。3)若在四邊形ABCD如圖4—7內(nèi)任取一點(diǎn)O,從O向四個頂點(diǎn)作連線,把四邊形分成幾個三角形。

  我們知道,三角形內(nèi)角和等于180,那么四邊形的內(nèi)角和就等于:

 、2180=360如圖4

 、4180—360=360如圖4—7。

  例1已知:如圖48,直線于B、于C。

  求證:(1)(2)。

  本例題是四邊形內(nèi)角和定理的應(yīng)用,實(shí)際上它證明了兩邊相互垂直的兩個角相等或互補(bǔ)的關(guān)系,何時用相等,何時用互補(bǔ),如果需要應(yīng)用,作兩三步推理就可以證出。

  【總結(jié)、擴(kuò)展】

  1、四邊形的有關(guān)概念。

  2、四邊形對角線的作用。

  3、四邊形內(nèi)角和定理。

  八、布置作業(yè)

  教材P128中1(1)、2、 3。

  九、板書設(shè)計(jì)

初二數(shù)學(xué)教案9

  一、教學(xué)目標(biāo)

  1. 掌握等腰梯形的判定方法.

  2. 能夠運(yùn)用等腰梯形的性質(zhì)和判定進(jìn)行有關(guān)問題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析能力和計(jì)算能力.

  3. 通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會圖形變換的方法和轉(zhuǎn)化的思想

  二、教法設(shè)計(jì)

  小組討論,引導(dǎo)發(fā)現(xiàn)、練習(xí)鞏固

  三、重點(diǎn)、難點(diǎn)

  1.教學(xué)重點(diǎn):等腰梯形判定.

  2.教學(xué)難點(diǎn):解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線).

  四、課時安排

  1課時

  五、教具學(xué)具準(zhǔn)備

  多媒體,小黑板,常用畫圖工具

  六、師生互動活動設(shè)計(jì)

  教師復(fù)習(xí)引入,學(xué)生閱讀課本;學(xué)生在教師引導(dǎo)下探索等腰梯形的判定,歸納小結(jié)梯形轉(zhuǎn)化的常見的輔助線

  七、教學(xué)步驟

  【復(fù)習(xí)提問】

  1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?

  2.等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的?

  3.在研究解決梯形問題時的基本思想和方法是什么?常用的輔助線有哪幾種?

  我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來判定一個梯形是否是等腰梯形呢?今天我們就共同來研究這個問題.

  【引人新課】

  等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形.

  前面我們用等腰三角形的定理證明了等腰梯形的性質(zhì)定理,現(xiàn)在我們也可以用等腰三角形的判定定理來證明等腰梯形的判定定理.

  例1已知:如圖,在梯形 中, , ,求證: .

  分析:我們學(xué)過“如果一個三角形中有兩個角相等,那么它們所對的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個角轉(zhuǎn)化為等腰三角形的兩個底角,定理就容易證明了.

  (引導(dǎo)學(xué)生口述證明方法,然后利用投影儀出示三種證明方法)

  (1)如圖,過點(diǎn) 作 、 ,交 于 ,得 ,所以得 .

  又由 得 ,因此可得 .

  (2)作高 、 ,通過證 推出 .

  (3)分別延長 、 交于點(diǎn) ,則 與 都是等腰三角形,所以可得 .

  (證明過程略).

  例3 求證:對角線相等的梯形是等腰梯形.

  已知:如圖,在梯形 中, , .

  求證: .

  分析:證明本題的'關(guān)鍵是如何利用對角線相等的條件來構(gòu)造等腰三角形.

  在 和 中,已有兩邊對應(yīng)相等,別人要能證 ,就可通過證 得到 .

  (引導(dǎo)學(xué)生說出證明思路,教師板書證明過程)

  證明:過點(diǎn) 作 ,交 延長線于 ,得 ,

  ∴ .

  ∵ , ∴

  ∴

  ∵ , ∴

  又∵ 、 ,∴

  ∴ .

  說明:如果 、 交于點(diǎn) ,那么由 可得 , ,即等腰梯形對角線相交,可以得到以交點(diǎn)為頂點(diǎn)的兩個等腰三角形,這個結(jié)論雖不能直接引用,但可以為以后解題提供思路.

  例4 畫一等腰梯形,使它上、下底長分別5cm,高為4cm,并計(jì)算這個等腰梯形的周長和面積.

  分析:如圖,先算出 長,可畫等腰三角形 ,然后完成 的畫圖.

  畫法:①畫 ,使 .

  .

  ②延長 到 使 .

 、鄯謩e過 、 作 , , 、 交于點(diǎn) .

  四邊形 就是所求的等腰梯形.

  解:梯形 周長 .

  答:梯形周長為26cm,面積為 .

  【總結(jié)、擴(kuò)展】

  小結(jié):(由學(xué)生總結(jié))

  (l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個角相等”來判定它是等腰梯形.

  (2)梯形的畫圖:一般先畫出有關(guān)的三角形,在此基礎(chǔ)上再畫出有關(guān)的平行四邊形,最后得到所求圖形.(三角形奠基法)

  八、布置作業(yè)

  l.已知:如圖,梯形 中, , 、 分別為 、 中點(diǎn),且 ,求證:梯形 為等腰梯形.

  九、板書設(shè)計(jì)

  十、隨堂練習(xí)

  教材P177中l(wèi);P179中B組2

初二數(shù)學(xué)教案10

  一、班級情況分析:

  本學(xué)期一(1)班有學(xué)生40人,新轉(zhuǎn)學(xué)來一名女生。上學(xué)期末考試及格人數(shù)28人,高分人數(shù)3人,優(yōu)秀人數(shù)15人,雖然學(xué)生成績在年級排名第一,能過鎮(zhèn)中線,但是學(xué)生未能發(fā)揮出真實(shí)水平。優(yōu)秀臨界生以及及格臨界生的提升潛力較大。

  一(7)班有學(xué)生38人,上學(xué)期末考試及格人數(shù)18人,高分人數(shù)2人,優(yōu)秀人數(shù)5人,全班優(yōu)秀學(xué)生不多不夠拔尖,成績中層的學(xué)生占據(jù)大部分。學(xué)生好動,對數(shù)學(xué)學(xué)習(xí)的積極性普遍不夠高,學(xué)生好動,課堂氣氛較活躍。學(xué)生數(shù)學(xué)基礎(chǔ)不扎實(shí)。提升空間較大。

  兩班的整體成績均不夠理想。

  二、教材分析:

  本套教材切合《標(biāo)準(zhǔn)》的課程目標(biāo),有以下特點(diǎn):

  1.為學(xué)生的數(shù)學(xué)學(xué)習(xí)構(gòu)筑起點(diǎn),提供大量數(shù)學(xué)活動的線索,成為供所有學(xué)生從事數(shù)學(xué)學(xué)習(xí)的出發(fā)點(diǎn)。

  2.向?qū)W生提供現(xiàn)實(shí)、有趣、富有挑戰(zhàn)性的學(xué)習(xí)素材。所有數(shù)學(xué)知識的學(xué)習(xí),都力求從學(xué)生實(shí)際出發(fā),以他們熟悉或感興趣的問題情境引入學(xué)習(xí)主題,并展開數(shù)學(xué)探究。

  3.為學(xué)生提供探索、交流的時間和空間。設(shè)立了“做一做”、“想一想”、“議一議”等欄目,以使學(xué)生通過自主探索與合作交流,形成新的知識。

  4.展現(xiàn)數(shù)學(xué)知識的形成與應(yīng)用過程,讓學(xué)生經(jīng)歷真正的“做數(shù)學(xué)”、“用數(shù)學(xué)”的過程。

  5.滿足不同學(xué)生發(fā)展的需求。

  三、教學(xué)目標(biāo)及要求:

  第一章:

  1.經(jīng)歷用字母表示數(shù)量關(guān)系的過程,在現(xiàn)實(shí)情境中進(jìn)一步理解字母表示數(shù)的意義,發(fā)展符號感。

  2.經(jīng)歷探索整式運(yùn)算法則的過程,理解整式運(yùn)算的算理,進(jìn)一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達(dá)能力。

  3.了解整數(shù)指數(shù)冪的意義和正整數(shù)指數(shù)冪的運(yùn)算性質(zhì),會進(jìn)行簡單的整式加、減、乘、除運(yùn)算。

  4.會推導(dǎo)乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2

  第二章:

  1.經(jīng)歷觀察、操作、想象、推理、交流等過程,進(jìn)一步發(fā)展空間觀念、推理能力和有條理表達(dá)的能力。

  2.在具體情境中了解補(bǔ)角、余角、對頂角,知道等角的余角相等、等角的補(bǔ)角相等、對頂角相等。會用三角尺過已知直線外一點(diǎn)畫這條直線的平行線;會用尺規(guī)作一條線段等于已知線段、作一個角等于已知角。

  3.經(jīng)歷探索直線平行的條件以及平行線特征的過程,掌握直線平行的條件以及平行線的特征。

  4.進(jìn)一步激發(fā)學(xué)生對數(shù)學(xué)方面的興趣,體驗(yàn)從數(shù)學(xué)的角度認(rèn)識現(xiàn)實(shí)。

  第三章:

  1.能形象地描述百萬分之一等較小的數(shù)據(jù),并用科學(xué)記數(shù)法表示它們,進(jìn)一步發(fā)展數(shù)感;能借助計(jì)算器進(jìn)行有關(guān)科學(xué)記數(shù)法的計(jì)算。

  2.了解近似數(shù)與有效數(shù)字的概念,能按要求取近似數(shù),體會近似數(shù)的意義及在生活中的作用。

  3.通過實(shí)例,體驗(yàn)收集、整理、描述和分析數(shù)據(jù)的過程。

  4.能讀懂統(tǒng)計(jì)圖并從中獲取信息,能形象、有效地運(yùn)用統(tǒng)計(jì)圖描述數(shù)據(jù)。

  第四章:

  1.經(jīng)歷從實(shí)際問題和游戲中了解必然事件、不可能事件和不確定事件發(fā)生的可能性。

  2.體會等可能性與游戲規(guī)則的公平性,抽象出概率模型,計(jì)算概率,解決實(shí)際、作出合理決策的過程,體會概率是描述不確定現(xiàn)象的數(shù)學(xué)模型。

  3.能設(shè)計(jì)符合要求的簡單概率模型。

  第五章:

  1.通過觀察、操作、想象、推理、交流等活動,發(fā)展空間觀念,積累數(shù)學(xué)活動經(jīng)驗(yàn)。

  2.在探索圖形性質(zhì)的過程中,發(fā)展推理能力和有條理的表達(dá)能力。

  3.進(jìn)一步認(rèn)識三角形的有關(guān)概念,了解三邊之間的關(guān)系以及三角形的內(nèi)角和,了解三角形的穩(wěn)定性。

  4.了解圖形的全等,經(jīng)歷探索三角形全等條件的過程,掌握兩個三角形全等的條件,能應(yīng)用三角形的全等解決一些實(shí)際問題。

  5.在分別給出兩角一夾邊、兩邊一夾角和三邊的條件下,能夠利用尺規(guī)作出三角形。

  第六章:

  1.經(jīng)歷探索具體情境中兩個變量之間的關(guān)系的過程,進(jìn)一步發(fā)展符號感和抽象思維。

  2.能發(fā)現(xiàn)實(shí)際情境中的變量及其相互關(guān)系,并確定其中的自變量或因變量。

  3.能從表格、圖象中分析出某些變量之間的關(guān)系,并能用自己的語言進(jìn)行表達(dá),發(fā)展有條理地進(jìn)行思考和表達(dá)的能力。

  4.能根據(jù)具體問題,選取用表格或關(guān)系式來表示某些變量之間的關(guān)系,并結(jié)合對變量之間關(guān)系的分析,嘗試對變化趨勢進(jìn)行初步的預(yù)測。

  第七章:

  1.在豐富的現(xiàn)實(shí)情境中,經(jīng)歷觀察、折疊、剪紙,圖形欣賞與設(shè)計(jì)等數(shù)學(xué)活動過程,進(jìn)一步發(fā)展空間觀念。

  2.通過豐富的生活實(shí)例認(rèn)識軸對稱,探索它的基本性質(zhì),理解對應(yīng)點(diǎn)所連的線段被對稱軸垂直平分的性質(zhì)。

  3.探索并了解基本圖形的軸對稱性及其相關(guān)性質(zhì)。

  4.能夠按要求作出簡單平面圖形經(jīng)過軸對稱后的圖形,探索簡單圖形之間的軸對稱關(guān)系,并能指出對稱軸。

  5.欣賞現(xiàn)實(shí)生活中的軸對稱圖形,能利用軸對稱進(jìn)行一些圖案設(shè)計(jì),體驗(yàn)軸對稱在現(xiàn)實(shí)生活中的廣泛應(yīng)用和豐富的文化價(jià)值。

  四、教學(xué)改革的設(shè)想(教學(xué)具體措施)

  充分體現(xiàn)培優(yōu)扶困的實(shí)施,提高優(yōu)秀人數(shù)和及格人數(shù),減少低分人數(shù),切實(shí)做到:

  1、根據(jù)學(xué)生的個別差異。因材施教,熱情關(guān)懷,循循善誘,加強(qiáng)個別輔導(dǎo)。幫助他們增強(qiáng)學(xué)習(xí)的信心,逐步達(dá)到教學(xué)的基本要求,盡量做好培優(yōu)輔差工作。

  2、精心設(shè)計(jì)練習(xí),講究練習(xí)方式提高練習(xí)效率,對作業(yè)嚴(yán)格要求,及時檢查,認(rèn)真批改,對作業(yè)中的錯誤及時找出原因,要求學(xué)生認(rèn)真改正,培養(yǎng)學(xué)生獨(dú)立完成作業(yè)的良好習(xí)慣。

  3、認(rèn)真?zhèn)湔n,深入鉆研教材,堅(jiān)持自主學(xué)習(xí),充分發(fā)揮學(xué)生的主動學(xué)習(xí)有積極性,了解學(xué)生裝學(xué)習(xí)數(shù)學(xué)的.特點(diǎn),研究教學(xué)規(guī)律,不斷改進(jìn)教學(xué)方法。

  4、堅(jiān)持學(xué)習(xí),多聽課,多模仿,虛心向有經(jīng)驗(yàn)的老師請教教育教學(xué)方法。努力提升自身的教學(xué)技能。

  5、在教學(xué)中,加強(qiáng)學(xué)生思維能力的培養(yǎng)和非智力因素的培養(yǎng)。多開展數(shù)學(xué)活動課,擴(kuò)大學(xué)生的視野,拓寬知識面,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,發(fā)展數(shù)學(xué)才能,發(fā)揮學(xué)生的主動性,獨(dú)立性和創(chuàng)造性。

  6、開展“一幫一”活動,實(shí)行以優(yōu)帶差點(diǎn)的幫助方法,多利用課余時間加強(qiáng)輔導(dǎo),從基礎(chǔ)知識補(bǔ)起,力求使學(xué)生一課一得,力求提高優(yōu)秀率和及格率。

  7.課前充分備好課,在課堂教學(xué)中特別要體現(xiàn)出培扶,分層次教育。

  8.重視學(xué)生學(xué)習(xí)興趣的培養(yǎng),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的內(nèi)驅(qū)力。

  9.大膽地深度嘗試新的教學(xué)方法,要因地制宜,因材施教。

  10.重視基礎(chǔ)知識過關(guān)和單元測試過關(guān)工作,及時進(jìn)行單元總結(jié),做好平時的查漏補(bǔ)缺工作,不遺漏知識盲點(diǎn)。

  11.注重對作業(yè)、練習(xí)紙、練習(xí)冊、測驗(yàn)卷的及時批改,并盡量做到全批全改,及時反饋信息。

  12.多用多媒體教學(xué),使數(shù)學(xué)生動化。

  13.多用實(shí)物教學(xué),使數(shù)學(xué)形象化。

  14.實(shí)行課課清,日日清,周周清。

  15.加強(qiáng)課堂管理,嚴(yán)把課堂質(zhì)量關(guān),提高課堂效率。

  16.抓好學(xué)生的作業(yè)上交完成情況。

  17.加強(qiáng)與學(xué)生的交流,做好學(xué)生的思想教育與培優(yōu)輔差工作。

  五、擬定本學(xué)期教學(xué)目標(biāo)

  六、擬定本學(xué)期培優(yōu)扶養(yǎng)計(jì)劃。

  培扶措施

  對臨界優(yōu)秀生

  在理解題、思維訓(xùn)練題給予方法指導(dǎo),并要加強(qiáng)書面的表達(dá)能力。做到思路清晰,格式標(biāo)準(zhǔn);A(chǔ)訓(xùn)練題的過關(guān)檢測,對每次測試的成績給予個別指導(dǎo),多用激勵教育。

  對臨界及格生:

  首先加強(qiáng)基礎(chǔ)知識的培訓(xùn),尤其要在選擇題、填空題多下功夫。在課堂上、課后對他們多加注意,及時糾正錯誤。抓好每次單元過關(guān)測試工作,抓好時機(jī),多表揚(yáng),樹立信心。

  七、教學(xué)內(nèi)容及課時安排(略)

  八、作業(yè)格式及批改要求:

  作業(yè)格式:

  1.作業(yè)本左邊都畫上豎線,留約0.5CM空白。

  2.每次作業(yè)都要在第一行注明日期和作業(yè)的出處,如P42,1即課本42面第1題。

  3。每題作業(yè)之間要留一行隔開,每次作業(yè)之間至少留一行空白,再寫下一次作業(yè)。

  批改要求:

  1.每題作業(yè)都要有批改的痕跡,錯的打“×”,對的打“√”,書寫要清晰,明確看出錯對。

  2.每次作業(yè)必須全批全改,要體現(xiàn)出層次。作業(yè)簿要打分?jǐn)?shù)+等級(等級分A、B、C三等,代表學(xué)生的書寫成績。)

  3、每次的作業(yè)要及時更正,更正時統(tǒng)一在每次的作業(yè)后面用紅筆更正。

初二數(shù)學(xué)教案11

  教學(xué)目標(biāo):

  知識與技能

  1、掌握直角三角形的判別條件,并能進(jìn)行簡單應(yīng)用;

  2、進(jìn)一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗(yàn),培養(yǎng)從實(shí)際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型、

  3、會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論、

  情感態(tài)度與價(jià)值觀

  敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識、

  教學(xué)重點(diǎn)

  運(yùn)用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論、

  教學(xué)難點(diǎn)

  會辨析哪些問題應(yīng)用哪個結(jié)論、

  課前準(zhǔn)備

  標(biāo)有單位長度的細(xì)繩、三角板、量角器、題篇

  教學(xué)過程:

  復(fù)習(xí)引入:

  請學(xué)生復(fù)述勾股定理;使用勾股定理的`前提條件是什么?

  已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?

  創(chuàng)設(shè)問題情景:由課前準(zhǔn)備好的一組學(xué)生以小品的形式演示教材第9頁古埃及造直角的方法、

  這樣做得到的是一個直角三角形嗎?

  提出課題:能得到直角三角形嗎

  講授新課:

  1、如何來判斷?(用直角三角板檢驗(yàn))

  這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?

  就是說,如果三角形的三邊為 , , ,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當(dāng)滿足較小兩邊的平方和等于較大邊的平方時)

  2、繼續(xù)嘗試:下面的三組數(shù)分別是一個三角形的三邊長a,b,c:

  5,12,13; 6, 8, 10; 8,15,17、

 。1)這三組數(shù)都滿足a2 +b2=c2嗎?

 。2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?

  3、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、

  滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)、

  4、例1 一個零件的形狀如左圖所示,按規(guī)定這個零件中 ∠A和∠DBC都應(yīng)為直角、工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?

  隨堂練習(xí):

  1、下列幾組數(shù)能否作為直角三角形的三邊長?說說你的理由、

 、9,12,15; ⑵15,36,39;

 、12,35,36; ⑷12,18,22、

  2、已知ABC中BC=41, AC=40, AB=9, 則此三角形為_______三角形, ______是角、

  3、四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積、

  4、習(xí)題1、3

  課堂小結(jié):

  1、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、

  2、滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)、勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù)、

初二數(shù)學(xué)教案12

  一、相交線:

  性質(zhì):兩條直線相交,有且只有一個交點(diǎn)。

  二、對頂角、鄰補(bǔ)角:

  1.對頂角:如圖,直線AB和CD相交于點(diǎn)O,∠1與∠2有公共頂點(diǎn)O,它們的兩邊互為反向延長線,這樣的兩個角叫做對頂角。

  說明:兩個角是對頂角必需滿足兩個條件:(1)有公共頂點(diǎn);(2)兩邊互為反向延長線。

  2.鄰補(bǔ)角:如圖,∠1和∠2有一條公共邊OC,它們的另一條邊OA、OB互為反向延長線,顯然它們互補(bǔ)。具有這種關(guān)系的兩個角叫做互為鄰補(bǔ)角。

  3.性質(zhì):(1)對頂角相等;(2)互為鄰補(bǔ)角的兩個角的和等于。

  三、有關(guān)垂線的概念和性質(zhì):1.概念:如果兩條直線相交所成的四個角中,有一角是直角,就說這兩條直線互相垂直,其中的一條叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。

  說明:垂直是相交的一種特殊情況。

  2.點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度,叫做點(diǎn)到直線的距離。

  說明:垂線是直線,而垂線段是一條線段,點(diǎn)到直線的距離不是指垂線段,而是指垂線段的長度。

  3.平行線間的距離:同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做這兩條平行線間的距離。平行線間的距離處處相等。

  4.性質(zhì):(1)互相垂直的兩條直線相交所成的四個角都是直角;(2)過直線上一點(diǎn)或直線外一點(diǎn)畫已知直線的垂線,并且只能畫出一條垂線;(3)連結(jié)直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。簡單地說:垂線段最短;(4)平行線間的距離處處相等。

  四、同位角、內(nèi)錯角、同旁內(nèi)角:

  如圖,直線AB、CD被第三條直線EF所截,構(gòu)成八個角,簡稱“三線八角”。

  1.同位角:∠1與∠5,∠2與∠6,∠3與∠7,∠4與∠8,它們分別在AB、CD同側(cè),且在EF同側(cè)。同位角呈“F”形;

  2.內(nèi)錯角:∠3與∠5,∠4與∠6,它們分夾在AB、CD之間,同時又各在EF兩側(cè)。內(nèi)錯角呈“Z”形;

  3.同旁內(nèi)角:∠4與∠5,∠3與∠6,它們分別夾在AB、CD之間,同時又在EF同側(cè)。同旁內(nèi)角呈“U”形。

  說明:(1)同位角、內(nèi)錯角、同旁內(nèi)角是指具有特殊位置關(guān)系的兩個角;

 。2)這三類角都是由兩條直線被第三條直線所截形成的;

  (3)同位角特征:截線同旁,被截兩線的同方向;內(nèi)錯角特征:截線兩旁,被截兩線段之間;同旁內(nèi)角特征:截線同旁,被截兩線段之間;

 。4)兩條直線被第三條直線所截成的八個角中,同位角4對,內(nèi)錯角2對,同旁內(nèi)角2對。

  常見考法

 。1)對頂角、鄰補(bǔ)角、同位角、內(nèi)錯角和同旁內(nèi)角,在中考中必有所涉及,一般是綜合其它知識一起考查;(2)垂線段最短的性質(zhì)在生活中有廣泛應(yīng)用,在中考中一般以填空、作圖出現(xiàn),主是根據(jù)要求作出垂線段或用性質(zhì)解釋理由。

  誤區(qū)提醒

 。1)對頂角、鄰補(bǔ)角以及垂線的概念理解有誤;(2)在復(fù)雜圖形中辨認(rèn)同位角、內(nèi)錯角、同旁內(nèi)角時產(chǎn)生遺漏或錯認(rèn)。

  【典型例題】如圖,∠BAC=90°,AD⊥BC,則下面的結(jié)論中,正確的個數(shù)是()個。

 、冱c(diǎn)B到AC的垂線段是線段AB;

 、诰段AC是點(diǎn)C到AB的垂線段;

  ③線段AD是點(diǎn)D到BC的垂線段;

 、芫段BD是點(diǎn)B到AD的垂線段;

  A.1B.2C.3D.4

  【解析】③是錯誤的,其余的均是正確的,故本題選C

  一、目標(biāo)與要求

  1.理解對頂角和鄰補(bǔ)角的概念,能在圖形中辨認(rèn);

  2.掌握對頂角相等的性質(zhì)和它的'推證過程;

  3.通過在圖形中辨認(rèn)對頂角和鄰補(bǔ)角,培養(yǎng)學(xué)生的識圖能力。

  二、重點(diǎn)

  在較復(fù)雜的圖形中準(zhǔn)確辨認(rèn)對頂角和鄰補(bǔ)角;

  兩條直線互相垂直的概念、性質(zhì)和畫法;

  同位角、內(nèi)錯角、同旁內(nèi)角的概念與識別。

  三、難點(diǎn)

  在較復(fù)雜的圖形中準(zhǔn)確辨認(rèn)對頂角和鄰補(bǔ)角;

  對點(diǎn)到直線的距離的概念的理解;

  對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì);

  能區(qū)分平行線的性質(zhì)和判定,平行線的性質(zhì)與判定的混合應(yīng)用。

  四、知識框架

  五、知識點(diǎn)、概念總結(jié)

  1.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個角中,有公共頂點(diǎn)且有一條公共邊的兩個角是鄰補(bǔ)角。

  2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。

  3.對頂角和鄰補(bǔ)角的關(guān)系

  4.垂直:兩條直線、兩個平面相交,或一條直線與一個平面相交,如果交角成直角,叫做互相垂直。

  5.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

  6.垂足:如果兩直線的夾角為直角,那么就說這兩條直線互相垂直,它們的交點(diǎn)叫做垂足。

  7.垂線性質(zhì)

  (1)在同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。

  (2)連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。簡單說成:垂線段最短。

  (3)點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度,叫做點(diǎn)到直線的距離。

  8.同位角、內(nèi)錯角、同旁內(nèi)角:

  同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。

  內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。

  同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。

  9.平行:在平面上兩條直線、空間的兩個平面或空間的一條直線與一平面之間沒有任何公共點(diǎn)時,稱它們平行。

  10.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

  11.命題:判斷一件事情的語句叫命題。

  12.真命題:正確的命題,即如果命題的題設(shè)成立,那么結(jié)論一定成立。

  13.假命題:條件和結(jié)果相矛盾的命題是假命題。

  14.平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

  15.對應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這樣的兩個點(diǎn)叫做對應(yīng)點(diǎn)。

  16.定理與性質(zhì)

  對頂角的性質(zhì):對頂角相等。

  17.垂線的性質(zhì):

  性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。

  性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

  18.平行公理:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。

  平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

  19.平行線的性質(zhì):

  性質(zhì)1:兩直線平行,同位角相等。

  性質(zhì)2:兩直線平行,內(nèi)錯角相等。

  性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。

  20.平行線的判定:

  判定1:同位角相等,兩直線平行。

  判定2:內(nèi)錯角相等,兩直線平行。

  判定3:同旁內(nèi)角相等,兩直線平行。充要條件。

初二數(shù)學(xué)教案13

重難點(diǎn)分析

  本節(jié)的重點(diǎn)是矩形的性質(zhì)和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個角是直角,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。矩形的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。

  本節(jié)的難點(diǎn)是矩形性質(zhì)的靈活應(yīng)用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時還具有自己獨(dú)特的性質(zhì)。如果得到一個平行四邊形是矩形,就可以得到許多關(guān)于邊、角、對角線的條件,在實(shí)際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學(xué)生手足無措,教師在教學(xué)過程中應(yīng)給予足夠重視。

  教法建議

  根據(jù)本節(jié)內(nèi)容的特點(diǎn)和與平行四邊形的關(guān)系,建議教師在教學(xué)過程中注意以下問題:

  1.矩形的知識,學(xué)生在小學(xué)時接觸過一些,可由小學(xué)學(xué)過的知識作為引入。

  2.矩形在現(xiàn)實(shí)中的實(shí)例較多,在講解矩形的性質(zhì)和判定時,教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實(shí)例來進(jìn)行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識.

  3. 如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材145頁圖4-30所示,制作一個平行四邊形作為教學(xué)過程中的道具,既增強(qiáng)了學(xué)生的動手能力和參與感,有在教學(xué)中有切實(shí)的體例,使學(xué)生對知識的掌握更輕松些.

  4. 在對性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個學(xué)生分別對事先準(zhǔn)備后的圖形進(jìn)行邊、角、對角線的測量,然后在組內(nèi)進(jìn)行整理、歸納.

  5. 由于矩形的性質(zhì)定理證明比較簡單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來進(jìn)行具體的證明.

  6.在矩形性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。

  矩形教學(xué)設(shè)計(jì)

  教學(xué)目標(biāo)

  1.知道矩形的定義和矩形與平行四邊形之間的聯(lián)系;能說出矩形的四個角都是直角和矩形的的對角線相等的性質(zhì);能推出直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)。

  2.能運(yùn)用以上性質(zhì)進(jìn)行簡單的證明和計(jì)算。

  此外,從矩形與平行四邊形的區(qū)別與聯(lián)系中,體會特殊與一般的關(guān)系,滲透集合的思想,培養(yǎng)學(xué)生辨證唯物主義觀點(diǎn)。

  引導(dǎo)性材料

  想一想:一般四邊形與平行四邊形之間的`相互關(guān)系?在圖4.5-l的圓圈中填上四邊形和平行四邊形的字樣來說明這種關(guān)系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質(zhì);具有一些特殊的性質(zhì)。

  小學(xué)里已學(xué)過長方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個角都是直角(小學(xué)里已學(xué)過)等特殊性質(zhì),那么,如果在圖4.5-1中再畫一個圈表示矩形,這個圈應(yīng)畫在哪里?

  (讓學(xué)生初步感知矩形與平行四邊形的從屬關(guān)系。)

  演示:用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當(dāng)平行四邊形的一個內(nèi)角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形(矩形)。

  問題1:從上面的演示過程,可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?

  說明與建議:教師的演示應(yīng)充分展現(xiàn)變化過程,從而讓學(xué)生深切地感受到短形是無數(shù)個平行四邊形中的一個特例,同時,又使學(xué)生能正確地給出矩形的定義。

  問題2:矩形是特殊的平行四邊形,它除了有一個角是直角以外,還可能具有哪些平行四邊形所沒有的特殊性質(zhì)呢?

  說明與建議:讓學(xué)生分組探索,有必要時,教師可引導(dǎo)學(xué)生,根據(jù)研究平行四邊形獲得的經(jīng)驗(yàn),分別從邊、角、對角線三個方面探索矩形的特性,還可提醒學(xué)生,這種探索的基礎(chǔ)是矩形有一個角是直角矩形的四個角都相等(矩形性質(zhì)定理1),要學(xué)生給以證明(即課本例1后練習(xí)第1題)。

  學(xué)生能探索得出矩形的鄰邊互相垂直的特性,教師可作說明:這與矩形的四個角是直角本質(zhì)上是一致的,所以不必另列為一個性質(zhì)。

  學(xué)生探索矩形的四條對角線的大小關(guān)系時,如有困難,可引導(dǎo)學(xué)生測量并比較矩形兩條對角線的長度,然后加以證明,得出性質(zhì)定理2。

  問題3:矩形的一條對角線把矩形分成兩個直角三角形,矩形的對角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質(zhì)?

  說明與建議:(1)讓學(xué)生先觀察圖4.5-3,并議論猜想,如學(xué)生有困難,教師可引導(dǎo)學(xué)生觀察圖中的一個直角三角形(如Rt△ABC),讓學(xué)生自己發(fā)現(xiàn)斜邊上的中線BO與斜線AC的大小關(guān)系,然后讓學(xué)生自己給出如下證明:

  證明:在矩形ABCD中,對角線AC、BD相交于點(diǎn)O,AC=BD(矩形的對角線相等)。

  ,AO=CO

  在Rt△ABC中,BO是斜邊AC上的中線,且 。

  直角三角形斜邊上的中線等于斜邊的一半。

  例題解析

  例1:(即課本例1)

  說明:本題難度不大,又有助于學(xué)生加深對性質(zhì)定理的理解,教學(xué)中應(yīng)引導(dǎo)學(xué)生探索解法:

  如圖4.5-4,欲求對角線BD的長,由于BAD=90,AB=4cm,則只要再找出Rt△ABD中一條直角邊的長,或一個銳角的度數(shù),再從已知條件AOD=120出發(fā),應(yīng)用矩形的性質(zhì)可知,ADB=30,另外,還可以引導(dǎo)學(xué)生探究△AOB是什么特殊的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計(jì)算題書寫格式的示范;第二種解法如下:

  ∵四邊形ABCD是矩形,

  AC=BD(矩形的對角線相等)。

  又 。

  OA=BO,△AOB是等腰三角形,

  ∵AOD=120,AOB=180- 120= 60

  AOB是等邊三角形。

  BO=AB=4cm,

  BD=2BO=244cm=8cm。

  例2:(補(bǔ)充例題)

  已知:如圖4.5-5四邊形ABCD中,ABC=ADC=90, E是AC的中點(diǎn),EF平分BED交BD于點(diǎn)F。

  (l)猜想:EF與BD具有怎樣的關(guān)系?

  (2)試證明你的猜想。

  解:(l)EF垂直平分BD。

  (2)證明:∵ABC=90,點(diǎn)E是AC的中點(diǎn)。

  (直角三角形的斜邊上的中線等于斜邊的一半)。

  同理: 。

  BE=DE。

  又∵EF平分BED。

  EFBD,BF=DF。

  說明:本例是一道不給出結(jié)論,需要學(xué)生自己觀察---猜想---討論的幾何命題,有助于發(fā)展學(xué)生的推理(包括合情推理和邏輯推理)能力。如果學(xué)生不適應(yīng),或有困難,教師可根據(jù)實(shí)際情況加以引導(dǎo),這種訓(xùn)練,重要的不是猜對了沒有?證明了沒有?而是讓學(xué)生經(jīng)歷這樣一種自己研究圖形性質(zhì)的過程,順便指出:求解本題的重要基礎(chǔ)是識圖技能----能從復(fù)雜圖形中分解出如圖4.5-6所示的三個基本圖形。

  課堂練習(xí)

  1.課本例1后練習(xí)題第2題。

  2.課本例1后練習(xí)題第4題。

  小結(jié)

  1.矩形的定義:

  2.歸納總結(jié)矩形的性質(zhì):

  對邊平行且相等

  四個角都是直角

  對角線平行且相等

  3.直角三角形斜邊上的中線等于斜邊的一半。

  4.矩形的一條對角線把矩形分成兩個全等的直角三角形;矩形的兩條對角線把矩形分成四個全等的等腰三角形。因此,有關(guān)矩形的問題往往可化為直角三角形或等腰三角形的問題來解決。

  作業(yè)

  l.課本習(xí)題4.3A組第2題。

  2.課本復(fù)習(xí)題四A組第6、7題。

初二數(shù)學(xué)教案14

  一、教學(xué)目標(biāo)

  1.了解分式、有理式的概念。

  2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件。

  二、重點(diǎn)、難點(diǎn)

  1.重點(diǎn):理解分式有意義的條件,分式的值為零的條件。

  2.難點(diǎn):能熟練地求出分式有意義的條件,分式的值為零的條件。

  3。認(rèn)知難點(diǎn)與突破方法

  難點(diǎn)是能熟練地求出分式有意義的條件,分式的值為零的條件。突破難點(diǎn)的方法是利用分式與分?jǐn)?shù)有許多類似之處,從分?jǐn)?shù)入手,研究出分式的有關(guān)概念,同時還要講清分式與分?jǐn)?shù)的聯(lián)系與區(qū)別。

  三、例、習(xí)題的意圖分析

  本章從實(shí)際問題引出分式方程=,給出分式的描述性的定義:像這樣分母中含有字母的式子屬于分式。不要在列方程時耽誤時間,列方程在這節(jié)課里不是重點(diǎn),也不要求解這個方程。

  1.本節(jié)進(jìn)一步提出P4[思考]讓學(xué)生自己依次填出:。為下面的[觀察]提供具體的式子,就以上的式子,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?

  可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是(即A÷B)的形式。分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母。

  P5[歸納]順理成章地給出了分式的`定義。分式與分?jǐn)?shù)有許多類似之處,研究分式往往要類比分?jǐn)?shù)的有關(guān)概念,所以要引導(dǎo)學(xué)生了解分式與分?jǐn)?shù)的聯(lián)系與區(qū)別。

  希望老師注意:分式比分?jǐn)?shù)更具有一般性,例如分式可以表示為兩個整式相除的商(除式不能為零),其中包括所有的分?jǐn)?shù)。

  2.P5[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零。注意只有滿足了分式的分母不能為零這個條件,分式才有意義。即當(dāng)B≠0時,分式才有意義。

  3.P5例1填空是應(yīng)用分式有意義的條件—分母不為零,解出字母x的值。還可以利用這道題,不改變分式,只把題目改成“分式無意義”,使學(xué)生比較全面地理解分式及有關(guān)的概念,也為今后求函數(shù)的自變量的取值范圍,打下良好的基礎(chǔ)。

  4.P12[拓廣探索]中第13題提到了“在什么條件下,分式的值為0?”,下面補(bǔ)充的例2為了學(xué)生更全面地體驗(yàn)分式的值為0時,必須同時滿足兩個條件:1分母不能為零;2分子為零。這兩個條件得到的解集的公共部分才是這一類題目的解。

  四、課堂引入

  1.讓學(xué)生填寫P4[思考],學(xué)生自己依次填出:

  2.學(xué)生看P3的問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?

  請同學(xué)們跟著教師一起設(shè)未知數(shù),列方程。

  設(shè)江水的流速為x千米/時。

初二數(shù)學(xué)教案15

  一、教學(xué)目的

  1.使學(xué)生理解自變量的取值范圍和函數(shù)值的意義。

  2.使學(xué)生理解求自變量的取值范圍的兩個依據(jù)。

  3.使學(xué)生掌握關(guān)于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會求其函數(shù)值。

  4.通過求函數(shù)中自變量的取值范圍使學(xué)生進(jìn)一步理解函數(shù)概念。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):函數(shù)自變量取值的求法。

  難點(diǎn):函靈敏處變量取值的確定。

  三、教學(xué)過程

  復(fù)習(xí)提問

  1.函數(shù)的定義是什么?函數(shù)概念包含哪三個方面的'內(nèi)容?

  2.什么叫分式?當(dāng)x取什么數(shù)時,分式x+2/2x+3有意義?

 。ù穑悍帜咐锖凶帜傅挠欣硎浇蟹质剑帜浮0,即x≠3/2。)

  3.什么叫二次根式?使二次根式成立的條件是什么?

  (答:根指數(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)

  4.舉出一個函數(shù)的實(shí)例,并指出式中的變量與常量、自變量與函數(shù)。

  新課

  1.結(jié)合同學(xué)舉出的實(shí)例說明解析法的意義:用教學(xué)式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。

  2.結(jié)合同學(xué)舉出的實(shí)例,說明函數(shù)的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據(jù)是:

 。1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達(dá)式)有意義。

  (2)自變量取值范圍要使實(shí)際問題有意義。

  3.講解P93中例3。結(jié)合例3引出函數(shù)值的意義。并指出兩點(diǎn):

 。1)例3中的4個小題歸納起來仍是三類題型。

 。2)求函數(shù)值的問題實(shí)際是求代數(shù)式值的問題。

  小結(jié)

  1.解析法的意義:用數(shù)學(xué)式子表示函數(shù)的方法叫解析法。

  2.求函數(shù)自變量取值范圍的兩個方法(依據(jù)):

 。1)要使函數(shù)的解析式有意義。

  ①函數(shù)的解析式是整式時,自變量可取全體實(shí)數(shù);

 、诤瘮(shù)的解析式是分式時,自變量的取值應(yīng)使分母≠0;

 、酆瘮(shù)的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)≥0。

  (2)對于反映實(shí)際問題的函數(shù)關(guān)系,應(yīng)使實(shí)際問題有意義。

  3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。

  練習(xí):P94中1,2,3。

  作業(yè):P95~P96中A組3,4,5,6,7。B組1,2。

  四、教學(xué)注意問題

  1.注意滲透與訓(xùn)練學(xué)生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結(jié)構(gòu)仍是三類題型:整式、分式、二次根式。

  2.注意訓(xùn)練與培養(yǎng)學(xué)生的優(yōu)質(zhì)聯(lián)想能力。要求學(xué)生仿照例題自編題目是有效手段。

  3.注意培養(yǎng)學(xué)生對于“具體問題要具體分析”的良好學(xué)習(xí)方法。比如對于有實(shí)際意義來確定,由于實(shí)際問題千差萬別,所以我們就要具體分析,靈活處置。

【初二數(shù)學(xué)教案】相關(guān)文章:

初二數(shù)學(xué)教案09-20

初二作文-初二作文12-07

潤初二作文-初二作文12-07

懂你初二作文-初二作文12-07

前行初二作文初二作文11-28

初二的夢想作文-初二作文12-07

初二風(fēng)俗的作文-初二作文12-07

初二親情作文-初二作文12-07

初二作文:初二學(xué)生的“菜譜”08-06

我相信初二作文-初二作文12-07