八年級數(shù)學(xué)下冊一次函數(shù)教案
教學(xué)目標(biāo):
1、掌握一次函數(shù)解析式的特點及意義
2、知道一次函數(shù)與正比例函數(shù)的關(guān)系
3、理解一次函數(shù)圖象特點與解析式的聯(lián)系規(guī)律
教學(xué)重點:
1、 一次函數(shù)解析式特點
2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律
教學(xué)難點:
1、一次函數(shù)與正比例函數(shù)關(guān)系
2、根據(jù)已知信息寫出一次函數(shù)的表達式。
教學(xué)過程:
Ⅰ.提出問題,創(chuàng)設(shè)情境
問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時.已知A地直達北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時間有什么關(guān)系,以便根據(jù)時間估計自己和北京的距離.
分析 我們知道汽車距北京的路程隨著行車時間而變化,要想找出這兩個變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個變量的變化規(guī)律.為此,我們設(shè)汽車在高速公路上行駛時間為t小時,汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是
s=570-95t.
說明 找出問題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個變量,s是t的函數(shù),t是自變量,s是因變量.
問題2 小張準(zhǔn)備將平時的零用錢節(jié)約一些儲存起來.他已存有50元,從現(xiàn)在起每個月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開始的月份之間的函數(shù)關(guān)系式.
分析 我們設(shè)從現(xiàn)在開始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.
問題3 以上問題1和問題2表示的這兩個函數(shù)有什么共同點?
、颍畬(dǎo)入新課
上面的兩個函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱
y是x的正比例函數(shù)。
例1:下列函數(shù)中,y是x的一次函數(shù)的是( )
①y=x-6;②y=2x;③y=;④y=7-x x8
A、①②③B、①③④ C、①②③④ D、②③④
例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?
(1)面積為10cm2的三角形的底a(cm)與這邊上的高h(cm);
(2)長為8(cm)的平行四邊形的周長L(cm)與寬b(cm);
(3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;
(4)汽車每小時行40千米,行駛的路程s(千米)和時間t(小時).
。5)汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間x(時)之間的關(guān)系式;
(6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;
。7)一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h
(2)L=2b+16,L是b的一次函數(shù).
(3)y=150-5x,y是x的一次函數(shù).
(4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).
(5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);
。6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);
。7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)
例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.
分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.
解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?
若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.
例4 已知y與x-3成正比例,當(dāng)x=4時,y=3.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)y與x之間是什么函數(shù)關(guān)系;
(3)求x=2.5時,y的值.
解 (1)因為 y與x-3成正比例,所以y=k(x-3).
又因為x=4時,y=3,所以3= k(4-3),解得k=3,
所以y=3(x-3)=3x-9.
(2) y是x的一次函數(shù).
(3)當(dāng)x=2.5時,y=3×2.5=7.5.
1. 2
例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時12千米的速度從A地出發(fā),經(jīng)過B地到達C地.設(shè)此人騎行時間為x(時),離B地距離為y(千米).
(1)當(dāng)此人在A、B兩地之間時,求y與x的函數(shù)關(guān)系及自變量x取值范圍.
(2)當(dāng)此人在B、C兩地之間時,求y與x的函數(shù)關(guān)系及自變量x的取值范圍.
分析 (1)當(dāng)此人在A、B兩地之間時,離B地距離y為A、B兩地的距離與某人所走的路程的差.
(2)當(dāng)此人在B、C兩地之間時,離B地距離y為某人所走的路程與A、B兩地的距離的差.
解 (1) y=30-12x.(0≤x≤2.5)
(2) y=12x-30.(2.5≤x≤6.5)
例6 某油庫有一沒儲油的儲油罐,在開始的'8分鐘時間內(nèi),只開進油管,不開出油管,油罐的進油至24噸后,將進油管和出油管同時打開16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進油管,只開出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時間內(nèi)進油管與出油管的流量分別保持不變.寫出這段時間內(nèi)油罐的儲油量y(噸)與進出油時間x(分)的函數(shù)式及相應(yīng)的x取值范圍.
分析 因為在只打開進油管的8分鐘內(nèi)、后又打開進油管和出油管的16分鐘和最后的只開出油管的三個階級中,儲油罐的儲油量與進出油時間的函數(shù)關(guān)系式是不同的,所以此題因分三個時間段來考慮.但在這三個階段中,兩變量之間均為一次函數(shù)關(guān)系.
解 在第一階段:y=3x(0≤x≤8);
在第二階段:y=16+x(8≤x≤16);
在第三階段:y=-2x+88(24≤x≤44).
Ⅲ.隨堂練習(xí)
根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?
2、為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標(biāo)準(zhǔn)如下:每戶每月用水量不超過6米3時,水費按0.6元/米3收費;每戶每月用水量超過6米3時,超過部分按1元/米3收費。設(shè)每戶每月用水量為x米3,應(yīng)繳水費y元。(1)寫出每月用水量不
超過6米3和超過6米3時,y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]
、簦n時小結(jié)
1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。
2、能根據(jù)已知簡單信息,寫出一次函數(shù)的表達式。
、酰n后作業(yè)
1、已知y-3與x成正比例,且x=2時,y=7
(1)寫出y與x之間的函數(shù)關(guān)系.
(2)y與x之間是什么函數(shù)關(guān)系.
(3)計算y=-4時x的值.
2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計算5千克重的包裹的郵資.
3.倉庫內(nèi)原有粉筆400盒.如果每個星期領(lǐng)出36盒,求倉庫內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.
4.今年植樹節(jié),同學(xué)們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時這些樹約有多高.
5.按照我國稅法規(guī)定:個人月收入不超過800元,免交個人所得稅.超過800元不超過1300元部分需繳納5%的個人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.
【八年級數(shù)學(xué)下冊一次函數(shù)教案】相關(guān)文章:
初二數(shù)學(xué)教案《一次函數(shù)》04-16
《一次函數(shù)》教案02-27
一次函數(shù)的的教案03-03
數(shù)學(xué)教案-確定一次函數(shù)的表達式01-21
數(shù)學(xué)教案-一次函數(shù)的圖象和性質(zhì)一次函數(shù)的圖象和性質(zhì)01-21