- 相關推薦
高一數(shù)學必修2教案
作為一名默默奉獻的教育工作者,常常要寫一份優(yōu)秀的教案,教案有助于學生理解并掌握系統(tǒng)的知識。那么教案應該怎么寫才合適呢?以下是小編為大家收集的高一數(shù)學必修2教案,僅供參考,希望能夠幫助到大家。
高一數(shù)學必修2教案1
一、教學目標
1.知識與技能:
(1)通過實物操作,增強學生的直觀感知。
。2)能根據(jù)幾何結構特征對空間物體進行分類。
。3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
(4)會表示有關于幾何體以及柱、錐、臺的分類。
2.過程與方法:
。1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
。2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態(tài)度與價值觀:
。1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
。2)培養(yǎng)學生的空間想象能力和抽象括能力。
二、教學重點:
讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
難點:柱、錐、臺、球的結構特征的概括。
三、教學用具
。1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀。
四、教學過程
(一)創(chuàng)設情景,揭示課題
1、由六根火柴最多可搭成幾個三角形?(空間:4個)
2、在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?
3、展示具有柱、錐、臺、球結構特征的空間物體。
問題:請根據(jù)某種標準對以上空間物體進行分類。
。ǘ⒀刑叫轮
空間幾何體:多面體(面、棱、頂點):棱柱、棱錐、棱臺;
旋轉體(軸):圓柱、圓錐、圓臺、球。
1、棱柱的結構特征:
。1)觀察棱柱的幾何物體以及投影出棱柱的圖片,
思考:它們各自的特點是什么?共同特點是什么?
。▽W生討論)
。2)棱柱的主要結構特征(棱柱的'概念):
、儆袃蓚面互相平行;
、谄溆喔髅娑际瞧叫兴倪呅危
、勖肯噜弮缮纤倪呅蔚墓策吇ハ嗥叫。
。3)棱柱的表示法及分類:
。4)相關概念:底面(底)、側面、側棱、頂點。
2、棱錐、棱臺的結構特征:
。1)實物模型演示,投影圖片;
。2)以類似的方法,根據(jù)出棱錐、棱臺的結構特征,并得出相關的概念、分類以及表示。
棱錐:有一個面是多邊形,其余各面都是有一個公共頂點的三角形。
棱臺:且一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。
3、圓柱的結構特征:
(1)實物模型演示,投影圖片——如何得到圓柱?
(2)根據(jù)圓柱的概念、相關概念及圓柱的表示。
4、圓錐、圓臺、球的結構特征:
。1)實物模型演示,投影圖片——如何得到圓錐、圓臺、球?
。2)以類似的方法,根據(jù)圓錐、圓臺、球的結構特征,以及相關概念和表示。
5、柱體、錐體、臺體的概念及關系:
探究:棱柱、棱錐、棱臺都是多面體,它們在結構上有哪些相同點和不同點?三者的關系如何?當?shù)酌姘l(fā)生變化時,它們能否互相轉化?
圓柱、圓錐、圓臺呢?
6、簡單組合體的結構特征:
。1)簡單組合體的構成:由簡單幾何體拼接或截去或挖去一部分而成。
。2)實物模型演示,投影圖片——說出組成這些物體的幾何結構特征。
。3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。
。ㄈ┡烹y解惑,發(fā)展思維
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?
。ㄋ模╈柟躺罨
練習:課本P7 練習1、2; 課本P8 習題1.1 第1、2、3、4、5題
。ㄎ澹w納整理:
由學生整理學習了哪些內容
高一數(shù)學必修2教案2
一、教學目標
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。
二、教學重難點:
重點:畫出簡單幾何體、簡單組合體的三視圖;
難點:識別三視圖所表示的空間幾何體。
三、學法指導:
觀察、動手實踐、討論、類比。
四、教學過程
。ㄒ唬﹦(chuàng)設情景,揭開課題
展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的'投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側視圖的高度相等,且相互對齊;
寬相等:俯視圖與側視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
。ㄈ╈柟叹毩
課本P15 練習1、2; P20習題1.2 [A組] 2。
(四)歸納整理
請學生回顧發(fā)表如何作好空間幾何體的三視圖
。ㄎ澹┎贾米鳂I(yè)
課本P20習題1.2 [A組] 1。
【高一數(shù)學必修2教案】相關文章:
高一數(shù)學必修一教案02-07
高中數(shù)學必修2教案12-16
關于高一數(shù)學必修一教案09-28
高中數(shù)學必修2教案5篇12-17
高一必修二教案01-16
數(shù)學必修4教案01-12
語文高一必修一教案10-19