- 相關(guān)推薦
數(shù)學(xué)教案:《因式分解》
作為一位不辭辛勞的人民教師,通常會(huì)被要求編寫教案,借助教案可以更好地組織教學(xué)活動(dòng)?靵韰⒖冀贪甘窃趺磳懙陌桑∠旅媸切【幘恼淼臄(shù)學(xué)教案:《因式分解》,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
數(shù)學(xué)教案:《因式分解》1
教學(xué)目標(biāo)
1.知識(shí)與技能
了解因式分解的意義,以及它與整式乘法的關(guān)系.
2.過程與方法
經(jīng)歷從分解因數(shù)到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.
3.情感、態(tài)度與價(jià)值觀
在探索因式分解的方法的活動(dòng)中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識(shí),體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在含義與價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):了解因式分解的意義,感受其作用.
2.難點(diǎn):整式乘法與因式分解之間的.關(guān)系.
3.關(guān)鍵:通過分解因數(shù)引入到分解因式,并進(jìn)行類比,加深理解.
教學(xué)方法
采用“激趣導(dǎo)學(xué)”的教學(xué)方法.
教學(xué)過程
一、創(chuàng)設(shè)情境,激趣導(dǎo)入
問題牽引:
請(qǐng)同學(xué)們探究下面的2個(gè)問題:
問題1:720能被哪些數(shù)整除?談?wù)勀愕南敕?
問題2:當(dāng)a=102,b=98時(shí),求a2-b2的值.
二、豐富聯(lián)想,展示思維
探索:你會(huì)做下面的填空嗎?
1.ma+mb+mc=()();
2.x2-4=()();
3.x2-2xy+y2=()2.
師生共識(shí):把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式.
三、小組活動(dòng),共同探究
問題牽引:
(1)下列各式從左到右的變形是否為因式分解:
、(x+1)(x-1)=x2-1;
②a2-1+b2=(a+1)(a-1)+b2;
、7x-7=7(x-1).
(2)在下列括號(hào)里,填上適當(dāng)?shù)捻?xiàng),使等式成立.
、9x2(______)+y2=(3x+y)(_______);
、趚2-4xy+(_______)=(x-_______)2.
四、隨堂練習(xí),鞏固深化
課本練習(xí).
探研時(shí)空:計(jì)算:993-99能被100整除嗎?
五、課堂總結(jié),發(fā)展?jié)撃?/p>
由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:
1.什么叫因式分解?
2.因式分解與整式運(yùn)算有何區(qū)別?
六、布置作業(yè),專題突破
選用補(bǔ)充作業(yè).
板書設(shè)計(jì)
數(shù)學(xué)教案:《因式分解》2
教學(xué)目標(biāo)
1、 會(huì)運(yùn)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法。
2、 會(huì)運(yùn)用因式分解解簡(jiǎn)單的方程。
二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):
教學(xué)重點(diǎn)
因式分解在多項(xiàng)式除法和解方程兩方面的應(yīng)用。
教學(xué)難點(diǎn):
應(yīng)用因式分解解方程涉及較多的推理過程。
三、教學(xué)過程
(一)引入新課
1、 知識(shí)回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應(yīng)用平方差公式: = (a+b) (a—b)③應(yīng)用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y
(二)師生互動(dòng),講授新課
1、運(yùn)用因式分解進(jìn)行多項(xiàng)式除法例1 計(jì)算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一個(gè)小問題 :這里的x能等于3/2嗎 ?為什么?
想一想:那么(4x —9) (3—2x) 呢?練習(xí):課本P162課內(nèi)練習(xí)
合作學(xué)習(xí)
想一想:如果已知 ( )( )=0 ,那么這兩個(gè)括號(hào)內(nèi)應(yīng)填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢? (讓學(xué)生自己思考、相互之間討論。┦聦(shí)上,若AB=0 ,則有下面的結(jié)論:(1)A和B同時(shí)都為零,即A=0,且B=0(2)A和B中有一個(gè)為零,即A=0,或B=0
試一試:你能運(yùn)用上面的結(jié)論解方程(2x+1)(3x—2)=0 嗎?3、 運(yùn)用因式分解解簡(jiǎn)單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個(gè)未知數(shù)的`方程的解也叫做根,當(dāng)方程的根多于一個(gè)時(shí),常用帶足標(biāo)的字母表示,比如:x1 ,x2
等練習(xí):課本P162課內(nèi)練習(xí)2
做一做!對(duì)于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時(shí)除以(x+2)嗎?為什么?
教師總結(jié):運(yùn)用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個(gè)一元一次方程;(2)如果方程的兩邊都不是零,那么應(yīng)該先移項(xiàng),把方程的右邊化為零以后再進(jìn)行解方程;遇到方程兩邊有公因式,同樣需要先進(jìn)行移項(xiàng)使右邊化為零,切忌兩邊同時(shí)除以公因式!4、知識(shí)延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知識(shí),總結(jié)收獲因式分解的兩種應(yīng)用:
。1)運(yùn)用因式分解進(jìn)行多項(xiàng)式除法
。2)運(yùn)用因式分解解簡(jiǎn)單的方程
(四)布置課后作業(yè)
作業(yè)本6、42、課本P163作業(yè)題(選做)
數(shù)學(xué)教案:《因式分解》3
教學(xué)目標(biāo):運(yùn)用平方差公式和完全平方公式分解因式,能說出平方差公式和完全平方公式的特點(diǎn),會(huì)用提公因式法與公式法分解因式.培養(yǎng)學(xué)生的.觀察、聯(lián)想能力,進(jìn)一步了解換元的思想方法.并能說出提公因式在這類因式分解中的作用,能靈活應(yīng)用提公因式法、公式法分解因式以及因式分解的標(biāo)準(zhǔn).
教學(xué)重點(diǎn)和難點(diǎn):1.平方差公式;2.完全平方公式;3.靈活運(yùn)用3種方法.
教學(xué)過程:
一、提出問題,得到新知
觀察下列多項(xiàng)式:x24和y225
學(xué)生思考,教師總結(jié):
(1)它們有兩項(xiàng),且都是兩個(gè)數(shù)的平方差;(2)會(huì)聯(lián)想到平方差公式.
公式逆向:a2b2=(a+b)(ab)
如果多項(xiàng)式是兩數(shù)差的形式,并且這兩個(gè)數(shù)又都可以寫成平方的形式,那么這個(gè)多項(xiàng)式可以運(yùn)用平方差公式分解因式.
二、運(yùn)用公式
例1:填空
、4a2=()2②b2=()2③0.16a4=()2
④1.21a2b2=()2⑤2x4=()2⑥5x4y2=()2
解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2
④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2
例2:下列多項(xiàng)式能否用平方差公式進(jìn)行因式分解
、1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2
解答:①1.21a2+0.01b2能用
、4a2+625b2不能用
、16x549y4不能用
④4x236y2不能用
數(shù)學(xué)教案:《因式分解》4
一、背景介紹
因式分解是代數(shù)式中的重要內(nèi)容,它與前一章整式和后一章分式聯(lián)系極為密切。因式分解的教學(xué)是在整式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,因式分解方法的理論依據(jù)就是多項(xiàng)式乘法的逆變形。它不僅在多項(xiàng)式的除法、簡(jiǎn)便運(yùn)算中有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三角函數(shù)式的恒等變形提供了必要的基礎(chǔ)。因此,學(xué)好因式分解對(duì)于代數(shù)知識(shí)的后續(xù)學(xué)習(xí),具有相當(dāng)重要的意義。
二、教學(xué)設(shè)計(jì)
【教學(xué)內(nèi)容分析】
因式分解的概念是把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,它是因式分解方法的理論基礎(chǔ),也是本章中一個(gè)重要概念。教材在引入中是結(jié)合剪紙拼圖來闡述這一概念的,也可以與小學(xué)數(shù)學(xué)里因數(shù)分解的概念類比予以說明。在教學(xué)時(shí)對(duì)因式分解這一概念不宜要求學(xué)生一次徹底了解,應(yīng)該在講授因式分解的三種基本方法時(shí),結(jié)合具體例題的分解過程和分解結(jié)果,說明這一概念的意義,以達(dá)到逐步了解這一概念的教學(xué)目的。
【教學(xué)目標(biāo)】
1、認(rèn)知目標(biāo):(1)理解因式分解的概念和意義
(2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。
2、能力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、判斷能力和創(chuàng)新能力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維能力和綜合運(yùn)用能力。
3、情感目標(biāo):培養(yǎng)學(xué)生接受矛盾的對(duì)立統(tǒng)一觀點(diǎn),獨(dú)立思考,勇于探索的精神和實(shí)事求是的科學(xué)態(tài)度。
【教學(xué)重點(diǎn)、難點(diǎn)】
重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。
【教學(xué)準(zhǔn)備】
實(shí)物投影儀、多媒體輔助教學(xué)。
【教學(xué)過程】
㈠、情境導(dǎo)入
看誰算得快:(搶答)
(1)若a=101,b=99,則a2-b2=___________;
(2)若a=99,b=-1,則a2-2ab+b2=____________;
(3)若x=-3,則20x2+60x=____________。
【初一年級(jí)學(xué)生活波好動(dòng),好表現(xiàn),爭(zhēng)強(qiáng)好勝。情境導(dǎo)入借助搶答的方式進(jìn)行,引進(jìn)競(jìng)爭(zhēng)機(jī)制,可以使學(xué)生在參與的過程中提高興趣,并增強(qiáng)競(jìng)爭(zhēng)意識(shí)和探究欲望!
㈡、探究新知
1、請(qǐng)每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
【“與其拉馬喝水,不如讓它口渴”。探索最佳解題方法的過程,就是學(xué)生“口渴”的地方。由此引起學(xué)生的求知欲!
2、觀察:a2-b2=(a+b)(a-b) ,
a2-2ab+b2 = (a-b)2 ,
20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的左邊是一個(gè)什么式子,右邊又是什么形式?)
【利用教師的主導(dǎo)作用,把學(xué)生的無意識(shí)的觀察轉(zhuǎn)變?yōu)橛幸庾R(shí)的觀察,同時(shí)教師應(yīng)鼓勵(lì)學(xué)生大膽描述自己的觀察結(jié)果,并及時(shí)予以肯定!
3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)
【讓學(xué)生自己概括出所感知的知識(shí)內(nèi)容,有利于學(xué)生在實(shí)踐中感悟知識(shí)的生成過程,培養(yǎng)學(xué)生的語言表達(dá)能力。】
板書課題:§6.1因式分解
因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。
、、前進(jìn)一步
1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2 ,
(a-b)2= a2-2ab+b2,
20x(x+3)= 20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?
。ㄒ⒁庾寣W(xué)生區(qū)分因式分解與整式乘法的區(qū)別,防止學(xué)生出現(xiàn)在進(jìn)行因式分解當(dāng)中,半路又做乘法的錯(cuò)誤。)
【注重?cái)?shù)學(xué)知識(shí)間的聯(lián)系,給學(xué)生提供探索與交流的空間,讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的生成過程,由學(xué)生發(fā)現(xiàn)整式乘法與因式分解的相互關(guān)系,培養(yǎng)學(xué)生觀察、分析問題的能力和逆向思維能力及創(chuàng)新能力!
2、因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2-b2=========(a+b)(a-b)
整式乘法
說明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。
結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。(多媒體展示學(xué)生得出的成果)
、、鞏固新知
1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?
(1)x2-3x+1=x(x-3)+1 ;
(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;
(4)4x2-4x+1=(2x-1)2;
(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;
(7)k2+ +2=(k+ )2;
(8)18a3bc=3a2b?6ac。
【針對(duì)學(xué)生易犯的錯(cuò)誤,制造認(rèn)知沖突,讓學(xué)生充分暴露錯(cuò)誤,然后通過分析、討論,達(dá)到理解的效果!
2、你能寫出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。
【學(xué)生出題熱情、積極性高,因初一學(xué)生好表現(xiàn),因而能激發(fā)學(xué)生學(xué)習(xí)興趣,激活學(xué)生的思維。】
、、應(yīng)用解釋
例 檢驗(yàn)下列因式分解是否正確:
(1)x2y-xy2=xy(x-y);
(2)2x2-1=(2x+1)(2x-1);
(3)x2+3x+2=(x+1)(x+2).
分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的'多項(xiàng)式是否相等。
練習(xí) 計(jì)算下列各題,并說明你的算法:(請(qǐng)學(xué)生板演)
(1)872+87×13
(2)1012-992
、辍⑺季S拓展
1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=
2.機(jī)動(dòng)題:(填空)x2-8x+m=(x-4)( ),且m=
【進(jìn)一步拓展學(xué)生在數(shù)學(xué)領(lǐng)域內(nèi)的視野,增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的興趣,使學(xué)生從小熱衷于數(shù)學(xué)的學(xué)習(xí)和探索。通過機(jī)動(dòng)題,了解學(xué)生對(duì)概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造能力,及時(shí)評(píng)價(jià),及時(shí)矯正!
㈦、課堂回顧
今天這節(jié)課,你學(xué)到了哪些知識(shí)?有哪些收獲與感受?說出來大家分享。
【課堂小結(jié)交給學(xué)生, 讓學(xué)生總結(jié)本節(jié)課中概念的發(fā)現(xiàn)過程,運(yùn)用概念分析問題的過程,養(yǎng)成學(xué)生學(xué)習(xí)——總結(jié)——學(xué)習(xí)的良好習(xí)慣。唯有總結(jié)反思,才能控制思維操作,才能促進(jìn)理解,提高認(rèn)知水平,從而促進(jìn)數(shù)學(xué)觀點(diǎn)的形成和發(fā)展,更好地進(jìn)行知識(shí)建構(gòu),實(shí)現(xiàn)良性循環(huán)!
㈧、布置作業(yè)
教科書第153的作業(yè)題。
【設(shè)計(jì)思想】
葉圣陶先生曾說過課堂教學(xué)的最高藝術(shù)是看學(xué)生,而不是看教師,看學(xué)生能否在課堂中煥發(fā)生命的活力。因此本教學(xué)是按“投疑——感知——概括——鞏固、應(yīng)用和拓展”的敘述模式呈現(xiàn)教學(xué)內(nèi)容的,這種呈現(xiàn)方式符合七年級(jí)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)規(guī)律,使學(xué)生從被動(dòng)的學(xué)習(xí)到主動(dòng)探索和發(fā)現(xiàn)的轉(zhuǎn)化中感受到學(xué)習(xí)與探索的樂趣。本堂課先采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性,再把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,使學(xué)生能順利地掌握重點(diǎn),突破難點(diǎn),提高能力。并在課堂教學(xué)中,引導(dǎo)學(xué)生體會(huì)知識(shí)的發(fā)生發(fā)展過程,堅(jiān)持啟發(fā)式的教學(xué)方法,鼓勵(lì)學(xué)生充分地動(dòng)腦、動(dòng)口、動(dòng)手,積極參與到教學(xué)中來,充分體現(xiàn)了學(xué)生的主動(dòng)性原則。并改變了傳統(tǒng)的言傳身教的方式,恰當(dāng)?shù)剡\(yùn)用了現(xiàn)代教育技術(shù),展現(xiàn)了一個(gè)平等、互動(dòng)的民主課堂。
數(shù)學(xué)教案:《因式分解》5
教學(xué)目標(biāo)
1.知識(shí)與技能
會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.
2.過程與方法
經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問題中的應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):利用平方差公式分解因式.
2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.
3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.
教學(xué)方法
采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進(jìn)自己的.思維.
教學(xué)過程
一、觀察探討,體驗(yàn)新知
問題牽引:
請(qǐng)同學(xué)們計(jì)算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
學(xué)生活動(dòng):動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.
(1)(a+5)(a-5)=a2-52=a2-25;
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
教師活動(dòng):引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
1.分解因式:a2-25;2.分解因式16m2-9n.
學(xué)生活動(dòng):從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
教師活動(dòng):引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).
二、范例學(xué)習(xí),應(yīng)用所學(xué)
例1:把下列各式分解因式:(投影顯示或板書)
(1)x2-9y2;(2)16x4-y4;
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;
(5)m2(16x-y)+n2(y-16x).
思路點(diǎn)撥:在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
教師活動(dòng):?jiǎn)l(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.
學(xué)生活動(dòng):分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);
(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);
(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);
(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);
(5)m2(16x-y)+n2(y-16x)
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n)
數(shù)學(xué)教案:《因式分解》6
教學(xué)目標(biāo)
1.知識(shí)與技能
能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.
2.過程與方法
使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.
3.情感、態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.
2.難點(diǎn):正確地確定多項(xiàng)式的公因式.
3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.
教學(xué)方法
采用“啟發(fā)式”教學(xué)方法.
教學(xué)過程
一、回顧交流,導(dǎo)入新知
復(fù)習(xí)交流:
下列從左到右的變形是否是因式分解,為什么?
(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
問題:
1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?
2.多項(xiàng)式4x2-x和xy2-yz-y呢?
請(qǐng)將上述多項(xiàng)式分別寫成兩個(gè)因式的乘積的形式,并說明理由.
教師歸納:我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的'公因式是y.
概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.
二、小組合作,探究方法
教師提問:多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?
師生共識(shí):提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.
三、范例學(xué)習(xí),應(yīng)用所學(xué)
例1:把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
例2:分解因式,3a2(x-y)3-4b2(y-x)2
思路點(diǎn)撥:觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2?3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2?3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
例3:用簡(jiǎn)便的方法計(jì)算:0.84×12+12×0.6-0.44×12.
教師活動(dòng):引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡(jiǎn)便.
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
教師活動(dòng):在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習(xí),鞏固深化
課本P167練習(xí)第1、2、3題.
探研時(shí)空:
利用提公因式法計(jì)算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、課堂總結(jié),發(fā)展?jié)撃?/p>
1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)公因式.在找公因式時(shí)應(yīng)注意:(1)系數(shù)要找公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.
2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.
六、布置作業(yè),專題突破
課本P170習(xí)題15.4第1、4(1)、6題.
板書設(shè)計(jì)
數(shù)學(xué)教案:《因式分解》7
一、教材分析
1、教材的地位與作用
“整式的乘法”是整式的加減的后續(xù)學(xué)習(xí)從冪的運(yùn)算到各種整式的乘法,整章教材都突出了學(xué)生的自主探索過程,依據(jù)原有的知識(shí)基礎(chǔ),或運(yùn)用乘法的各種運(yùn)算規(guī)律,或借助直觀而又形象的圖形面積,得到各種運(yùn)算的'基本法則、兩個(gè)主要的乘法公式及因式分解的基本方法學(xué)生自己對(duì)知識(shí)內(nèi)容的探索、認(rèn)識(shí)與體驗(yàn),完全有利于學(xué)生形成合理的知識(shí)結(jié)構(gòu),提高數(shù)學(xué)思維能力.利用公式法進(jìn)行因式分解時(shí),注意把握多項(xiàng)式的特點(diǎn),對(duì)比乘法公式乘積結(jié)果的形式,選擇正確的分解方法。
因式分解是一種常用的代數(shù)式的恒等變形,因式分解是多項(xiàng)式乘法公式的逆向變形,它是將一個(gè)多項(xiàng)式變形為多項(xiàng)式與多項(xiàng)式的乘積。
2、教學(xué)目標(biāo)
。1)會(huì)推導(dǎo)乘法公式
。2)在應(yīng)用乘法公式進(jìn)行計(jì)算的基礎(chǔ)上,感受乘法公式的作用和價(jià)值。
。3)會(huì)用提公因式法、公式法進(jìn)行因式分解。
。4)了解因式分解的一般步驟。
。5)在因式分解中,經(jīng)歷觀察、探索和做出推斷的過程,提高分析問題和解決問題的能力。
3、重點(diǎn)、難點(diǎn)和關(guān)鍵
重點(diǎn):乘法公式的意義、分式的由來和正確運(yùn)用;用提公因式法和公式法進(jìn)行因式分解。
難點(diǎn):正確運(yùn)用乘法公式;正確分解因式。
關(guān)鍵:正確理解乘法公式和因式分解的意義。
二、本單元教學(xué)的方法和策略:
1.注重知識(shí)形成的探索過程,讓學(xué)生在探索過程中領(lǐng)悟知識(shí),在領(lǐng)悟過程中建構(gòu)體系,從而更好地實(shí)現(xiàn)知識(shí)體系的更新和知識(shí)的正向遷移.
2.知識(shí)內(nèi)容的呈現(xiàn)方式力求與學(xué)生已有的知識(shí)結(jié)構(gòu)相聯(lián)系,同時(shí)兼顧學(xué)生的思維水平和心理特征.
3.讓學(xué)生掌握基本的數(shù)學(xué)事實(shí)與數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),減輕不必要的記憶負(fù)擔(dān).
4.注意從生活中選取素材,給學(xué)生提供一些交流、討論的空間,讓學(xué)生從中體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,逐步養(yǎng)成談數(shù)學(xué)、想數(shù)學(xué)、做數(shù)學(xué)的良好習(xí)慣.
三、課時(shí)安排:
2.1平方差公式 1課時(shí)
2.2完全平方公式 2課時(shí)
2.3用提公因式法進(jìn)行因式分解 1課時(shí)
2.4用公式法進(jìn)行因式分解 2課時(shí)
【數(shù)學(xué)教案:《因式分解》】相關(guān)文章:
因式分解教案03-19
因式分解的應(yīng)用10-02
初中因式分解方法11-04
人教版因式分解教案01-04
因式分解教案設(shè)計(jì)12-16
因式分解的教案設(shè)計(jì)10-07
初中數(shù)學(xué)因式分解教案11-05
因式分解教案集合5篇04-06