初中數(shù)學優(yōu)秀教案
作為一名專為他人授業(yè)解惑的人民教師,通常需要用到教案來輔助教學,編寫教案助于積累教學經(jīng)驗,不斷提高教學質(zhì)量。那么優(yōu)秀的教案是什么樣的呢?下面是小編幫大家整理的初中數(shù)學優(yōu)秀教案,歡迎大家分享。
初中數(shù)學優(yōu)秀教案1
教學目標:
1、 在現(xiàn)實情境中理解線段、射線、直線等簡單圖形(知識目標)
2、 會說出線段、射線、直線的特征;會用字母表示線段、射線、直線(能力目標)
3、 通過操作活動,了解兩點確定一條直線等事實,積累操作活動的經(jīng)驗,培養(yǎng)學生的興趣、愛好,感受圖形世界的豐富多彩。(情感態(tài)度目標)
教學難點:
了解“兩點確定一條直線”等事實,并應用它解決一些實際問題
教具:
多媒體、棉線、三角板
教學過程:
情景創(chuàng)設:
觀察電腦展示圖,使學生感受圖形世界的豐富多彩,激發(fā)學習興趣。
如何來描述我們所看到的現(xiàn)象?
教學過程:
1、 一段拉直的棉線可近似地看作線段
師生畫線段
演示投影片1:
①將線段向一個方向無限延長,就形成了______
學生畫射線
②將線段向兩個方向無限延長就形成了_______
學生畫直線
2、 討論小組交流:
、 生活中,還有哪些物體可以近似地看作線段、射線、直線?
。◤娬{(diào)近似兩個字,注意引導學生線段、射線、直線是從生活上抽象出來的)
、诰段、射線、直線,有哪些不同之處,有哪些相同之處?
。ü膭顚W生用自己的語言描述它們各自的特點)
3、 問題1:圖中有幾條線段?哪幾條?
“要說清楚哪幾條,必須先給線段起名字!”從而引出線段的記法。
點的記法:用一個大寫英文字母
線段的記法:
、儆脙蓚端點的字母來表示
②用一個小寫英文字母表示
自己想辦法表示射線,讓學生充分討論,并比較如何表示合理
射線的記法:
用端點及射線上一點來表示,注意端點的字母寫在前面
直線的記法:
、 用直線上兩個點來表示
② 用一個小寫字母來表示
強調(diào)大寫字母與小寫字母來表示它們時的區(qū)別
。ㄎ覀冎浪麄兪菬o限延長的,我們?yōu)榱朔奖阊芯考s定成俗的'用上面的方法來表示它們。)
練習1:讀句畫圖(如圖示)
。1)連BC、AD
。2)畫射線AD
。3)畫直線AB、CD相交于E
。4)延長線段BC,反向延長線段DA相交與F
。5)連結(jié)AC、BD相交于O
練習2:右圖中,有哪幾條線段、射線、直線
4、 問題2 請過一點A畫直線,可以畫幾條?過兩點A、B呢?
學生通過畫圖,得出結(jié)論:過一點可以畫無數(shù)條直線
經(jīng)過兩點有且只有一條直線
問題3 如果你想將一硬紙條固定在硬紙板上,至少需要幾根圖釘?
為什么?(學生通過操作,回答)
小組討論交流:
你還能舉出一個能反映“經(jīng)過兩點有且只有一條直線”的實例嗎?
適當引導:栽樹時只要確定兩個樹坑的位置,就能確定同一行的樹坑所在的直線。建筑工人在砌墻時,經(jīng)常在兩個墻角分別立一根標志桿,在兩根標志桿之間拉一根繩,沿這根繩就可以砌出直的墻來。
5、 小結(jié):
、 學生回憶今天這節(jié)課學過的內(nèi)容
進一步清晰線段、射線、直線的概念
② 強調(diào)線段、射線、直線表示方法的掌握
6、 作業(yè):
、匍喿x“讀一讀” P121
②習題4的1、2、3、4作為思考題
初中數(shù)學優(yōu)秀教案2
一、素質(zhì)教育目標
(一)知識教學點
1.掌握的三要素,能正確畫出.
2.能將已知數(shù)在上表示出來,能說出上已知點所表示的數(shù).
(二)能力訓練點
1.使學生受到把實際問題抽象成數(shù)學問題的訓練,逐步形成應用數(shù)學的意識.
2.對學生滲透數(shù)形結(jié)合的思想方法.
(三)德育滲透點
使學生初步了解數(shù)學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點.
(四)美育滲透點
通過畫,給學生以圖形美的教育,同時由于數(shù)形的結(jié)合,學生會得到和諧美的享受.
二、學法引導
1.教學方法:根據(jù)教師為主導,學生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導—反饋矯正”的教學方法.
2.學生學法:動手畫,動腦概括的三要素,動手、動腦做練習.
三、重點、難點、疑點及解決辦法
1.重點:正確掌握畫法和用上的點表示有理數(shù).
2.難點:有理數(shù)和上的點的對應關(guān)系。
四、課時安排
1課時
五、教具學具準備
電腦、投影儀、自制膠片.
六、師生互動活動設計
師生同步畫,學生概括三要素,師出示投影,生動手動腦練習
七、教學步驟
(一)創(chuàng)設情境,引入新課
師:大家知識溫度計的用途是什么?
生:溫度計可以測量溫度
(出示投影1)
三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的'液面在0下5個刻度,一個溫度計的液面在0刻度.
師:三個溫度計所表示的溫度是多少?
生:2℃,-5℃,0℃.
我們能否用類似溫度計的圖形表示有理數(shù)呢?
這種表示數(shù)的圖形就是今天我們要學的內(nèi)容—(板書課題).
【教法說明】從溫度計用標有讀數(shù)的刻度來表示溫度的高低這個事實出發(fā),引出本節(jié)課所要學的內(nèi)容—.再從溫度計這個實物形象抽象出來研究.既激發(fā)了學生的學習興趣,又使學生受到把實際問題抽象成數(shù)學問題的訓練,培養(yǎng)了用數(shù)學的意識.
(二)探索新知,講授新課
1.的畫法
與溫度計類似,可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零,具體做法如下:
第一步:畫直線定原點原點表示0(相當于溫度計上的0℃).
第二步:規(guī)定從原點向右的為正方向那么相反的方向(從原點向左)則為負方向.(相當于溫度計上℃以上為正,0℃以下為負).
第三步:選擇適當?shù)拈L度為單位長度(相當于溫度計上每1℃占1小格的長度).
【教法說明】教師邊講解邊示范,學生跟著一起畫圖.培養(yǎng)學生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學生在認知過程中領(lǐng)悟這種思想方法.
讓學生觀察畫好的直線,思考以下問題:
(出示投影1)
(1)原點表示什么數(shù)?
(2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?
(3)表示+2的點在什么位置?表示-1的點在什么位置?
(4)原點向右0.5個單位長度的A點表示什么數(shù)?原點向左個單位長度的B點表示什么數(shù)?
根據(jù)老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出的定義。
學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準備更正或補充。
初中數(shù)學優(yōu)秀教案3
一、教材分析
本節(jié)內(nèi)容是人民教育出版社出版《義務教育課程實驗教科書(五四學制)數(shù)學》(供天津用)八年級下冊第十章整式第一節(jié)整式加減第2小節(jié)整式的加減。
二、設計思想
本節(jié)內(nèi)容是學生掌握了“整式”有關(guān)概念的延展學習,為后繼學習整式運算、因式分解、一元二次方程及函數(shù)知識奠定基礎(chǔ),是“數(shù)”向“式”的正式過度,具有十分重要地位。
八年級學生已具有了較強的數(shù)的運算技能和“合并”的意識(解一元一次方程中用)同時也具有初步的觀察、歸納、探索的技能。因此,我結(jié)合教材,立足讓每個學生都有發(fā)展的宗旨,我采用合作探究的學習方式開展教學活動,通過設計有針對性、多樣式的問題引導學生,給學生提供充足的、和諧的探索空間讓學生學習。通過學習活動不但培養(yǎng)學生化簡意識,提升數(shù)學運算技能而且讓學生深刻體會到數(shù)學是解決實際問題的重要工具,增強應用數(shù)學的意識。
三、教學目標:
。ㄒ唬┲R技能目標:
1、理解同類項的含義,并能辨別同類項。
2、掌握合并同類項的方法,熟練的合并同類項。
3、掌握整式加減運算的方法,熟練進行運算。
(二)過程方法目標:
1、通過探究同類項定義、合并同類項的方法的活動,培養(yǎng)學生觀察、歸納、探究的能力。
2、通過合并同類項、整式加減運算的'練習活動,提高學生運算技能,提升運算的準確率培養(yǎng)學生化簡意識,發(fā)展學生的抽象概括能力。
3、通過研究引例、探究例1的活動,發(fā)展學生的.形象思維,初步培養(yǎng)學生的符號感。
。ㄈ┣楦袃r值目標:
1、通過交流協(xié)商、分組探究,培養(yǎng)學生合作交流的意識和敢于探索未知問題的精神。
2、通過學習活動培養(yǎng)學生科學、嚴謹?shù)膶W習態(tài)度。
四、教學重、難點:
合并同類項
五、教學關(guān)鍵:
同類項的概念
六、教學準備:
教師:
1、篩選數(shù)學題目,精心設置問題情境。
2、制作大小不等的兩個長方體紙盒實物模型,并能展開。
3、設計多媒體教學課件。(要凸顯①單項式中系數(shù)、字母、指數(shù)的特征②長方體紙盒立體圖、展開圖。)
學生:
1、復習有關(guān)單項式的概念、有理數(shù)四則運算及去括號的法則)
2、每小組制作大小不等的兩個長方體紙盒模型。
初中數(shù)學優(yōu)秀教案4
一、 教學目標
1、 知識與技能目標
掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。
2、 能力與過程目標
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學生觀察、歸納、猜測、驗證等能力。
3、 情感與態(tài)度目標
通過學生自己探索出法則,讓學生獲得成功的喜悅。
二、 教學重點、難點
重點:運用有理數(shù)乘法法則正確進行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的'理解。
三、 教學過程
1、 創(chuàng)設問題情景,激發(fā)學生的求知欲望,導入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學生:26米。
教師:能寫出算式嗎?學生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
(1)教師出示以下問題,學生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。
、 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
2 ×3=
② -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
-2 ×3=
③ 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
2 ×(-3)=
、 (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
(-2) ×(-3)=
。2)學生歸納法則
①符號:在上述4個式子中,我們只看符號,有什么規(guī)律?
。+)×(+)=( ) 同號得
。-)×(+)=( ) 異號得
(+)×(-)=( ) 異號得
。-)×(-)=( ) 同號得
②積的絕對值等于 。
③任何數(shù)與零相乘,積仍為 。
。3)師生共同用文字敘述有理數(shù)乘法法則。
3、 運用法則計算,鞏固法則。
(1)教師按課本P75 例1板書,要求學生述說每一步理由。
(2)引導學生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
。3)學生做練習,教師評析。
。4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結(jié)出多因數(shù)相乘的符號法則。
初中數(shù)學優(yōu)秀教案5
一、課題引入
為了讓學生更好地理解正數(shù)與負數(shù)的概念,作為教師有必要了解數(shù)系的發(fā)展.從數(shù)系的發(fā)展歷程來看,微積分的基礎(chǔ)是實數(shù)理論,實數(shù)的基礎(chǔ)是有理數(shù),而有理數(shù)的基礎(chǔ)則是自然數(shù).自然數(shù)為數(shù)學結(jié)構(gòu)提供了堅實的基礎(chǔ).
對于“數(shù)的發(fā)展”(也即“數(shù)的擴充”),有著兩種不同的認知體系.一是數(shù)的自然擴充過程,如圖1所示,即數(shù)系發(fā)展的自然的、歷史的體系,它反映了人類對數(shù)的認識的歷史發(fā)展進程;另一是數(shù)的邏輯擴充過程,如圖2所示,即數(shù)系發(fā)展所經(jīng)歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數(shù)學家構(gòu)造的一種邏輯體系,其中綜合反映了現(xiàn)代數(shù)學中許多思想方法.
二、課題研究
在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數(shù)量.這些數(shù)量不僅與5、5000等數(shù)量有關(guān),而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的.
為了準確表達諸如此類的一些具有相反意義的量,僅用小學學過的正整數(shù)、正分數(shù)、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個數(shù)來表達的.因此,為了準確表達支出5000元,就有必要引入了一種新數(shù)—負數(shù).
我們把所學過的大于零的數(shù),都稱為正數(shù);而且還可以在正數(shù)的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數(shù),讀作“正5”.
在正數(shù)的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構(gòu)成的數(shù)統(tǒng)稱為負數(shù).“-5”讀作“負5”,“-5000”讀作“負5000”.
于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數(shù)量就有了不同的表達方式.
利用正數(shù)與負數(shù)可以準確地表達或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數(shù)記作“+2”,把乙隊的凈勝球數(shù)記作“-2”.
借助實際例子能夠讓學生較好地理解為什么要引入負數(shù),認識到負數(shù)是為了有效表達與實際生活相關(guān)的一些數(shù)量而引入的一種新數(shù),而不是人為地“硬造”出來的一種“新數(shù)”.
三、鞏固練習
例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的.1600元錢買了一臺空調(diào),又該怎樣記錄這筆支出呢?
思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數(shù)或負數(shù)來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.
特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數(shù)量,都用正數(shù)來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數(shù)量則用負數(shù)來表示.
再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.
例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當天的收盤價與開盤價的漲跌情況如下表:單位:元
日期周二周三周四周五
開盤+0.16+0.25+0.78+2.12
收盤-0.23-1.32-0.67-0.65
當日收盤價
試在表中填寫周二到周五該股票的收盤價.
思路分析:以周二為例,表中數(shù)據(jù)“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數(shù)據(jù)“-0.23”則表示“周二該股票收盤時的收盤價比當天的開盤價降低了0.23元”.
因此,這五天該股票的開盤價與收盤價分別應該按如下的方式進行計算:
周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球隊以主客場的形式進行雙循環(huán)比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數(shù)分別是主客隊的進球數(shù),例如3∶2表示主隊進3球客隊進2球.
初中數(shù)學優(yōu)秀教案6
教學目的 知識技能 使學生會用列一元二次方程的方法解決有關(guān)面積、體積方面和經(jīng)濟方面的問題.
數(shù)學思考 提高將實際問題轉(zhuǎn)化為數(shù)學問題的能力以及用數(shù)學的意識,滲透轉(zhuǎn)化的思想、方程的思想及數(shù)形結(jié)合的思想.
解決問題 通過列一元二次方程的方法解決日常生活及生產(chǎn)實際中遇到的有關(guān)面積、體積方面和經(jīng)濟方面的問題.
情感態(tài)度 通過探究性學習,抓住問題的關(guān)鍵,揭示它的規(guī)律性,展示解題的簡潔性的數(shù)學美.
教學難點 審題,從文字語言中挖掘有價值的信息.
知識重點 會用列一元二次方程的方法解有關(guān)面積、體積方面和經(jīng)濟方面的問題.
教學過程 設計意圖
教學過程
問題一:列方程解應用題的一般步驟?
師生共同回憶
列方程解應用題的步驟:
(1)審題;(2)設未知數(shù);
。3)列方程;(4)求解;
。5)檢驗; (6)答.
問題二:矩形的周長和面積?長方體的體積?
問題三:如圖,某小區(qū)內(nèi)有一塊長、寬比為1:2的矩形空地,計劃在該空地上修筑兩條寬均為2m的互相垂直的小路,余下的`四塊小矩形空地鋪成草坪,如果四塊草坪的面積之和為312m2,請求出原來大矩形空地的長和寬.
教師活動:引導學生讀題,找到題目中的關(guān)鍵語句.
學生活動:在關(guān)鍵語句中找到反映相等關(guān)系的語句,探究解決辦法.
教師活動:用多媒體演示分析,解題方法.
做一做
如圖,有一塊長80cm,寬60cm的硬紙片,在四個角各剪去一個同樣的小正方形,用剩余部分做成一個底面積為1500cm2的無蓋的長方體盒子.求剪去的小正方形的邊長.
課堂練習:將一個長方形的長縮短5cm,寬增長3cm,正好得到一個正方形.已知原長方形的面積是正方形面積的 ,求這個正方形的邊長.
問題四:某商場銷售一種服裝,平均每天可售出20件,每件贏利40元.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件服裝降價1元,平均每天能多售出2件.在國慶節(jié)期間,商場決定采取降價促銷的措施,以達到減少庫存、擴大銷售量的目的.如果銷售這種服裝每天贏利1200元,那么每件服裝應降價多少元?
學生活動:在眾多的文字中,找到關(guān)鍵語句,分析相等關(guān)系.
教師活動:用多媒體幫助學生分析試題.提示學生檢驗解的合理性.
課堂練習:1.經(jīng)銷商以每雙21元的價格從廠家購進一批運動鞋,如果每雙鞋售價為a元,那么可以賣出這種運動鞋(350-10a)雙.物價局限定每雙鞋的售價不得超過進價的120%.如果商店要賺400元,每雙鞋的售價應定為多少元?需要賣出多少雙鞋?
2.某商店從廠家以每件18元的價格購進一批商品,該商店可以自行定價.據(jù)市場調(diào)查,該商品的售價與銷售量的關(guān)系是:若每件售價a元,則可賣出(320-10a)件,但物價部門限定每件商品加價不能超過進貨價25 %的.如果商店計劃要獲利400元,則每件商品的售價應定為多少元?需要賣出這種商品多少件?(每件商品的利潤=售價進貨價)
復習列方程解應用題的一般步驟.
本題為后面解決有關(guān)面積、體積方面問題做鋪墊.
提高學生的審題能力.使學生會解決有關(guān)面積的問題.
解決體積問題的問題
培養(yǎng)學生用數(shù)學的意識以及滲透轉(zhuǎn)化和方程的思想方法.
強調(diào)對方程的解進行雙重檢驗.
小結(jié)與作業(yè)
課堂
小結(jié) 利用一元二次方程解決實際問題時,要注意通過實際要求檢驗根的合理性,要注意審題能力的培養(yǎng).
本課
作業(yè) 課本第43頁 習題2
課后隨筆(課堂設計理念,實際教學效果及改進設想)
初中數(shù)學優(yōu)秀教案7
【教學內(nèi)容】
【教學目標】
1.掌握多邊形的內(nèi)角和的計算方法,并能用內(nèi)角和知識解決一些簡單的問題.
2.經(jīng)歷探索多邊形內(nèi)角和計算公式的過程,體會如何探索研究問題.
3.通過將多邊形"分割"為三角形的過程體驗,初步認識"轉(zhuǎn)化"的數(shù)學思想.
【教學重點與教學難點】
1.重點:多邊形的內(nèi)角和公式
2.難點:多邊形內(nèi)角和的推導
3.關(guān)鍵:.多邊形"分割"為三角形.
【教具準備】三角板、卡紙
【教學過程】
一、創(chuàng)設情景,揭示問題
1、在一次數(shù)學基礎(chǔ)知識搶答賽中,老師出了這么一個問題,一個五邊形的所有角相加等于多少度?一個學生馬上能回答,你們能嗎?
2、教具演示:將一個五邊形沿對角線剪開,能分割成幾個三角形?
你能說出五邊形的內(nèi)角和是多少度嗎?(點題)意圖:利用搶答問題和教具演示,調(diào)動學生的學習興趣和注意力
二、探索研究學會新知
1、回顧舊知,引出問題:
(1)三角形的內(nèi)角和等于_________.外角和等于____________
(2)長方形的內(nèi)角和等于_____,正方形的內(nèi)角和等于__________.
2、探索四邊形的內(nèi)角和:
(1)學生思考,同學討論交流.
。2)學生敘述對四邊形內(nèi)角和的認識(第一二組通過測量相加,第三四組通過畫對角線分成兩個三角形.)回顧三角形,正方形,長方形內(nèi)角和,使學生對新問題進行思考與猜想.以四邊形的內(nèi)角和作為探索多邊形的突破口。
。3)引導學生用"分割法"探索四邊形的內(nèi)角和:
方法一:連接一條對角線,分成2個三角形:
180°+180°=360°
從簡單的思維方式發(fā)散學生的想象力達到"分割"問題,并讓學生發(fā)現(xiàn)問題,解決問題教學步驟教學內(nèi)容備注方法二:在四邊形內(nèi)部任取一點,與頂點連接組成4個三角形.
180°×4-360°=360°
3、探索多邊形內(nèi)角和的問題,提出階梯式的問題:
你能嘗試用上面的方法一求出五邊形的內(nèi)角和嗎?(第一二組)
你能嘗試用上面的方法一求出六邊形的內(nèi)角和嗎?(第三,四組)那么n邊形呢?完成后填表:
n邊形3456...n分成三角形的.個數(shù)1234...n-2內(nèi)角和...4、及時運用,掌握新知:
(1)一個八邊形的內(nèi)角和是_____________度
。2)一個多邊形的內(nèi)角和是720度,這個多邊形是_____邊形
。3)一個正五邊形的每一個內(nèi)角是________,那么正六邊形的每個內(nèi)角是_________
通過學生動手去用分割法求五(六)邊形的內(nèi)角和,從簡單到復雜,從而歸納出n邊形的內(nèi)角和
三、點例透析
運用新知例題:想一想:如果一個四邊形的一組對角互補,那么另一組對角有什么關(guān)系呢?
四、應用訓練強化理解
4、第83頁練習1和2多邊形內(nèi)角和定理的應用
五、知識回放
課堂小結(jié)提問方式:本節(jié)課我們學習了什么?
1多邊形內(nèi)角和公式
2多邊形內(nèi)角和計算是通過轉(zhuǎn)化為三角形
六、作業(yè)練習
1、書面作業(yè):
2、課外練習:
初中數(shù)學優(yōu)秀教案8
【教學目標】:
通過實例,使學生體會用樣本估計總體的思想,能夠根據(jù)統(tǒng)計結(jié)果作出合理的判斷 和推測,能與 同學進行交流,用清晰的語言表達自己的觀點。
【重點難點】:
重點、難點:根據(jù)有關(guān)問題查找資料或調(diào)查,用隨機抽樣的方法選取樣本,能用樣本的平均數(shù)和方差,從而對總體有個體有個合理的估計和推測。
【教學過程】:
一、課前準備
問題:20xx年北京的空氣質(zhì)量情況如何?請用簡單隨機抽樣方法選取該年的30天,記錄并統(tǒng)計這30天北京的空氣污染指數(shù),求出這30天的平均空氣污染指數(shù),據(jù)此估計北京20xx年全年的平均空氣 污染指數(shù)和空氣質(zhì)量狀況。請同學們查詢中國環(huán)境保護網(wǎng)。
二、新課
師生用隨機抽樣的方法選定如下表中的30天,通過上網(wǎng)得知北京在這30天的空氣污染指數(shù)及質(zhì)量級別,如下表所示:
這30個空氣污染指數(shù)的平均數(shù)為107,據(jù)此估計該城市20xx年的平均空氣污染指數(shù)為107, 空氣質(zhì)量狀況屬于輕微污染。
討論:同學們之 間互相交流,算一算自己選取的樣本的污染指數(shù)為多少?根據(jù)樣本的空氣污染指數(shù)的平均數(shù),估計這個城市的空氣質(zhì)量 。
2、體會用樣本估計總體的合理性
下面是老師抽取的樣本的空氣 質(zhì)量級別、所占天數(shù)及比例的統(tǒng)計圖和該城市20xx年全年的相應數(shù)據(jù)的統(tǒng)計圖,同學們可以通過比較兩張統(tǒng)計圖,體會用樣本估計總體的合理性。
經(jīng)比較可以發(fā)現(xiàn),雖然從樣本獲得的數(shù)據(jù)與總體的不完全一致,但這樣的誤差 還是可以接受的,是一個較好的估計。
練習:同學們根據(jù)自己所抽取的樣本繪制統(tǒng)計圖,并 和20xx年全年的相應數(shù)據(jù)的統(tǒng)計圖進行比較,想一想用你所抽取的樣本估計總體是否合理?
顯然,由于各位同學所抽取的樣本的不同,樣本的污染指數(shù)不同。但是,正如我們前面已經(jīng)看到的,隨著樣本容量(樣本中包含的個體的個數(shù))的增加,由樣本得出的平均數(shù)往往會更接近總體的'平均數(shù),數(shù)學家已經(jīng)證明隨機抽樣方法是科學而可靠的 . 對于估計總體特性這類問 題,數(shù)學上的一般做法是給出具有一定可靠程度的一個估計值的范圍,將來同學們會學習到有關(guān)的數(shù)學知識。
3、加權(quán)平均數(shù)的求法
問題1:在計算20個男同學平均身高時,小華先將所有數(shù)據(jù)按由小到大的順序排列,如下表所示:
然后,他這樣計算這20個學生的平均身高:
小華這樣計算平均數(shù)可以嗎?為什么?
問題2:假設你們年級共有四個班級,各班的男同學人數(shù)和平均身高如下表所示.
小強這樣計算全年級男同學的平均身高:
小強這樣計算平均數(shù)可以嗎?為什么?
練習:在一個班的40學生中,14歲的有5人,15歲的有30人,16歲的有4人,17歲的有1人,求這個班級學生的平均年 齡。
三、小結(jié)
用樣本估計總體 時,樣本容量越大,樣本對總體的估計也就越精確。相應地,搜集、整理、計算數(shù)據(jù)的工作量也就越大,隨機抽樣是經(jīng)過數(shù)學證明了的可靠的方法,它對于 估計總體特征是很有幫助的。
四、作業(yè)
習題4.2 1
初中數(shù)學優(yōu)秀教案9
知識技能
會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。
數(shù)學思考
1.經(jīng)歷探索具體問題中的數(shù)量關(guān)系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學模型。進一步發(fā)展符號意識。
2.通過一元一次方程的學習,體會方程模型思想和化歸思想。
解決問題
能在具體情境中從數(shù)學角度和方法解決問題,發(fā)展應用意識。
經(jīng)歷從不同角度尋求分析問題和解決問題的.方法的過程,體驗解決問題方法的多樣性。
情感態(tài)度
經(jīng)歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。
教學重點
建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。
教學難點
分析實際問題中的相等關(guān)系,列出方程。
教學過程
活動一知識回顧
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?
教師:前面我們學習了簡單的一元一次方程的解法,下面請大家解下列方程。
出示問題(幻燈片)。
學生:獨立完成,板演2、4題,板演同學講解所用到的變形或運算,共同講評。
教師提問:(略)
教師追問:變形的依據(jù)是什么?
學生獨立思考、回答交流。
本次活動中教師關(guān)注:
(1)學生能否準確理解運用等式性質(zhì)和合并同列項求解方程。
(2)學生對解一元一次方程的變形方向(化成x=a的形式)的理解。
通過這個環(huán)節(jié),引導學生回顧利用等式性質(zhì)和合并同類項對方程進行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學習做好鋪墊。
活動二問題探究
問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本。這個班有多少學生?
教師:出示問題(投影片)
提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗你打算怎么做?
。▽W生嘗試提問)
學生:讀題,審題,獨立思考,討論交流。
1.找出問題中的'已知數(shù)和已知條件。(獨立回答)
2.設未知數(shù):設這個班有x名學生。
3.列代數(shù)式:x參與運算,探索運算關(guān)系,表示相關(guān)量。(討論、回答、交流)
4.找相等關(guān)系:
這批書的總數(shù)是一個定值,表示它的兩個等式相等。(學生回答,教師追問)
初中數(shù)學優(yōu)秀教案10
一、教學任務分析
1、教學目標定位
根據(jù)《數(shù)學課程標準》和素質(zhì)教育的要求,結(jié)合學生的認知規(guī)律及心理特征而確定,即:七年級的學生對身邊有趣事物充滿好奇心,對一些有規(guī)律的問題有探求的欲望,有很強的表現(xiàn)欲,同時又具備了一定的歸納、總結(jié)表達的能力。因此,確定如下教學目標:
。1).知識技能目標
讓學生掌握多邊形的內(nèi)角和的公式并熟練應用。
。2).過程和方法目標
讓學生經(jīng)歷知識的形成過程,認識數(shù)學特征,獲得數(shù)學經(jīng)驗,進一步發(fā)展學生的說理意識和簡單推理,合情推理能力。
(3).情感目標
激勵學生的學習熱情,調(diào)動他們的學習積極性,使他們有自信心,激發(fā)學生樂于合作交流意識和獨立思考的習慣。
2、教學重、難點定位
教學重點是多邊形的內(nèi)角和的得出和應用。
教學難點是探索和歸納多邊形內(nèi)角和的過程。
二、教學內(nèi)容分析
1、教材的地位與作用
本課選自人教版數(shù)學七年級下冊第七章第三節(jié)《多邊形的內(nèi)角和》的第一課時。本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,層層遞進,這樣編排易于激發(fā)學生的學習興趣,很適合學生的認知特點。
2、聯(lián)系及應用
本節(jié)課是以三角形的知識為基礎(chǔ),仿照三角形建立多邊形的有關(guān)概念。因此
多邊形的邊、內(nèi)角、內(nèi)角和等等都可以同三角形類比。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會把復雜化為簡單,化未知為已知,從特殊到一般和轉(zhuǎn)化等重要的思想方法。而多邊形在工程技術(shù)和實用圖案等方面有許多的實際應用,下一節(jié)平面鑲嵌就要用到,讓學生接觸一些多邊形的實例,可以加深對它的概念以及性質(zhì)的理解。
三、教學診斷分析
學生對三角形的知識都已經(jīng)掌握。讓學生由三角形的內(nèi)角和等于180°,是一個定值,猜想四邊形的內(nèi)角和也是一個定值,這是學生很容易理解的地方。由幾個特殊的四邊形的內(nèi)角和出發(fā),譬如長方形、正方形的內(nèi)角和都等于360°,可知如果四邊形的內(nèi)角和是一個定值,這個定值是360°。要得到四邊形的內(nèi)角和等于360°這個結(jié)論最直接的方法就是用量角器來度量。讓學生動手探索實踐,在探索過程中發(fā)現(xiàn)問題"度量會有誤差"。發(fā)現(xiàn)問題后接著引導學生聯(lián)想對角線的作用,四邊形的一條對角線,把它分成了兩個三角形,應用三角形的內(nèi)角和等于180°,就得到四邊形的內(nèi)角和等于360°。讓學生從特殊四邊形的內(nèi)角和聯(lián)想一般四邊形的內(nèi)角和,并在思想上引導,學習將新問題化歸為已有結(jié)論的思想方法,這里學生都容易理解。課堂教學設計中,在探究五邊形,六邊形和七邊形的內(nèi)角和時,讓學生動手實踐,設置探究活動二,為了讓學生拓寬思路,從不同的角度去思考這個問題,這個活動對學生的動手能力要求進一步提高了,學生對這個問題的理解稍微有些難度,但學生可根據(jù)自己本身的特點來加以補充和完善。在教學設計中,要求根據(jù)小組選擇的方法探索多邊形的內(nèi)角和。首先,小組內(nèi)各個成員對所選擇的方法要了解,能夠把掌握的知識運用到實踐中;再者,小組內(nèi)各個成員需要分工協(xié)作,才能夠順利的把任務完成;最后,學生還需要把自己的思維從感性認識提升到理性認識的高度,這樣就培養(yǎng)了學生合情推理的意識。
四、教法特點及預期效果分析
本節(jié)課借鑒了美國教育家杜威的"在做中學"的理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"的思想,我確定如下教法和學法:
1、教學方法的設計
我采用了探究式教學方法,整個探究學習的過程充滿了師生之間,學生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。
2、活動的`開展
利用學生的好奇心設疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
3、現(xiàn)代教育技術(shù)的應用
我利用課件輔助教學,適時呈現(xiàn)問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率。探究活動在本次教學設計中占了非常大的比例,探究活動一設置目的讓學生動手實踐,并把新知識與學過的三角形的相關(guān)知識聯(lián)系起來;探究活動二設置目的讓學生拓寬思路,為放開書本的束縛打下基礎(chǔ);培養(yǎng)學生動手操作的能力和合情推理的意識。通過師生共同活動,訓練學生的發(fā)散性思維,培養(yǎng)學生的創(chuàng)新精神;使學生懂得數(shù)學內(nèi)容普遍存在相互聯(lián)系,相互轉(zhuǎn)化的特點。練習活動的設計,目的一檢查學生的掌握知識的情況,并促進學生積極思考;目的二凸現(xiàn)小組合作的特點,并促進學生情感交流。
初中數(shù)學優(yōu)秀教案11
一、教學目標
1、了解二次根式的意義;
2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3、掌握二次根式的性質(zhì)和,并能靈活應用;
4、通過二次根式的計算培養(yǎng)學生的邏輯思維能力;
5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學美。
二、教學重點和難點
重點:
(1)二次根的.意義;
(2)二次根式中字母的取值范圍。
難點:確定二次根式中字母的取值范圍。
三、教學方法
啟發(fā)式、講練結(jié)合。
四、教學過程
。ㄒ唬⿵土曁釂
1、什么叫平方根、算術(shù)平方根?
2、說出下列各式的意義,并計算
(二)引入新課
新課:二次根式
定義:式子叫做二次根式。
對于請同學們討論論應注意的問題,引導學生總結(jié):
。1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。
。2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態(tài)”。請學生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學生分析、回答。
例1當a為實數(shù)時,下列各式中哪些是二次根式?
例2 x是怎樣的實數(shù)時,式子在實數(shù)范圍有意義?
解:略。
說明:這個問題實質(zhì)上是在x是什么數(shù)時,x—3是非負數(shù),式子有意義。
例3當字母取何值時,下列各式為二次根式:
分析:由二次根式的定義,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式。
解:
。1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當a、b為任意實數(shù)時,是二次根式。
。2)—3x≥0,x≤0,即x≤0時,是二次根式。
(3),且x≠0,∴x>0,當x>0時,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>2。當x>2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。
解:
。1)由2a+3≥0,得。
。2)由,得3a—1>0,解得。
。3)由于x取任何實數(shù)時都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數(shù)。
。4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。
初中數(shù)學優(yōu)秀教案12
教學內(nèi)容:
教科書第76頁,整式的加減單元復習。
教學目的和要求:
1.使學生對本章內(nèi)容的認識更全面、更系統(tǒng)化。
2.進一步加深學生對本章基礎(chǔ)知識的理解以及基本技能(主要是計算)的掌握。
3.通過復習,培養(yǎng)學生主動分析問題的習慣。
教學重點和難點:
重點:本章基礎(chǔ)知識的歸納、總結(jié);基礎(chǔ)知識的運用;整式的加減運算。
難點:本章基礎(chǔ)知識的歸納、總結(jié);基礎(chǔ)知識的運用;整式的加減運算。
教學方法:
分層次教學,講授、練習相結(jié)合。
教學過程:
一、復習引入:
1.主要概念:
(1)關(guān)于單項式,你都知道什么?
(2)關(guān)于多項式,你又知道什么?
引導學生積極回答所提問題,通過幾名同學的回答,復習單項式的定義、單項式的系數(shù)、次數(shù)的定義,多項式的定義以及多項式的項、同類項、次數(shù)、升降冪排列等定義。
(3)什么叫整式?
在學生回答的基礎(chǔ)上,進行歸納、總結(jié),用投影演示:
整式
2.主要法則:
、偬釂枺涸诒菊轮校覀儗W習了哪幾個重要的法則?分別如何敘述?
、谠趯W生回答的基礎(chǔ)上,進行歸納總結(jié):
整式的加減
二、講授新課:
1.例題:
例1:找出下列代數(shù)式中的單項式、多項式和整式。
,4xy, , ,x2+x+ ,0, ,m,―2.01×105
解:單項式有4xy, ,0,m,―2.01×105;多項式有 ;
整式有4xy, ,0,m,-2.01×105, 。
此題由學生口答,并說明理由。通過此題,進一步加深學生對于單項式、多項式、整式的定義的理解。
例2:指出下列單項式的系數(shù)、次數(shù):ab,―x2, xy5, 。
解:ab:系數(shù)是1,次數(shù)是2; ―x2:系數(shù)是―1,次數(shù)是2;
xy5:系數(shù)是 ,次數(shù)是6; :系數(shù)是― ,次數(shù)是9。
此題在學生回答過程中,及時強調(diào)“系數(shù)”及“次數(shù)”定義中應注意的問題:系數(shù)應包括前面的“+”號或“―”號,次數(shù)是“指數(shù)之和”。
例3:指出多項式a3―a2b―ab2+b3―1是幾次幾項式,最高次項、常數(shù)項各是什么?
解:是三次五項式,最高次項有:a3、―a2b、―ab2、b3,常數(shù)項是―1。
例4:化簡,并將結(jié)果按x的降冪排列:
(1)(2x4―5x2―4x+1)―(3x3―5x2―3x); (2)―[―(―x+ )]―(x―1);
(3)―3( x2―2xy+y2)+ (2x2―xy―2y2)。
解:(1)原式=2x4―3x2―x+1; (2)原式=―2x+ ; (3)原式=― x2+ xy―4y2。
通過此題強調(diào):(1)去括號(包括去多重括號)的.問題;(2)數(shù)字與多項式相乘時分配律的使用問題。
例5:化簡、求值:5ab―2[3ab―(4ab2+ ab)]―5ab2,其中a= ,b=― 。
解:化簡的結(jié)果是:3ab2,求值的結(jié)果是 。
例6:一個多項式加上―2x3+4x2y+5y3后,得x3―x2y+3y3,求這個多項式,并求當x=― ,y= 時,這個多項式的值。
解:此多項式為3x3―5x2y―2y3;值為― 。
3.課堂練習:
課本p76―77:1,2, 3⑴⑶⑸,4⑴⑶⑸⑺,5,7
四、課堂作業(yè):
課本76―77:3⑵⑷⑹,4⑵⑷⑹⑻,6,8,9
板書設計:
教學后記:
、俦竟(jié)是全章的復習課。首先是復習本章的主要概念和法則。在上節(jié)課所留復習作業(yè)的基礎(chǔ)上,一上課,就進行課堂提問,“關(guān)于單項式,你都知道什么”,“關(guān)于多項式,你又知道什么”。通過學生的回答,既可檢查學生作業(yè)完成的情況,又充分地調(diào)動學生積極性,使學生主動參與到課堂中來。而且這樣的問題具有一定的開放性,可使學生的思維發(fā)散,把他們所知道的有關(guān)內(nèi)容都說出來。通過對一個問題的多個側(cè)面地回答,可進一步加深學生對基礎(chǔ)知識的理解與重視,又可培養(yǎng)他們主動分析問題的習慣。
、趯τ趹搹娬{(diào)的問題,如果只是泛泛而談,效果不大。因此,在復習了本章的主要知識后,出了一組練習,通過具體的題目,強調(diào)有關(guān)的問題,將給學生留下更深的印象,學習效果會更好。
初中數(shù)學優(yōu)秀教案13
教學目標
1、知識與技能
能應用所學的函數(shù)知識解決現(xiàn)實生活中的問題,會建構(gòu)函數(shù)“模型”。
2、過程與方法
經(jīng)歷探索一次函數(shù)的應用問題,發(fā)展抽象思維。
3、情感、態(tài)度與價值觀
培養(yǎng)變量與對應的思想,形成良好的函數(shù)觀點,體會一次函數(shù)的應用價值。
重、難點與關(guān)鍵
1、重點:一次函數(shù)的應用。
2、難點:一次函數(shù)的應用。
3、關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應用思維。
教學方法
采用“講練結(jié)合”的教學方法,讓學生逐步地熟悉一次函數(shù)的應用。
教學過程
一、范例點擊,應用所學
【例5】小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數(shù)關(guān)系式,并畫出函數(shù)圖象。
y=
【例6】A城有肥料200噸,B城有肥料300噸,現(xiàn)要把這些肥料全部運往C、D兩鄉(xiāng)。從A城往C、D兩鄉(xiāng)運肥料的費用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運肥料的`費用分別為每噸15元和24元,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸,怎樣調(diào)運總運費最少?
解:設總運費為y元,A城往運C鄉(xiāng)的肥料量為x噸,則運往D鄉(xiāng)的肥料量為(200—x)噸。B城運往C、D鄉(xiāng)的肥料量分別為(240—x)噸與(60+x)噸。y與x的關(guān)系式為:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。
由圖象可看出:當x=0時,y有最小值10040,因此,從A城運往C鄉(xiāng)0噸,運往D鄉(xiāng)200噸;從B城運往C鄉(xiāng)240噸,運往D鄉(xiāng)60噸,此時總運費最少,總運費最小值為10040元。
拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應怎樣調(diào)運?
二、隨堂練習,鞏固深化
課本P119練習。
三、課堂總結(jié),發(fā)展?jié)撃?/strong>
由學生自我評價本節(jié)課的表現(xiàn)。
四、布置作業(yè),專題突破
課本P120習題14.2第9,10,11題。
板書設計
1、一次函數(shù)的應用例:
初中數(shù)學優(yōu)秀教案14
教學目標
1.使學生正確理解的意義,掌握的三要素;
2.使學生學會由上的已知點說出它所表示的數(shù),能將有理數(shù)用上的點表示出來;
3.使學生初步理解數(shù)形結(jié)合的思想方法.
教學重點和難點
重點:初步理解數(shù)形結(jié)合的思想方法,正確掌握畫法和用上的點表示有理數(shù).
難點:正確理解有理數(shù)與上點的對應關(guān)系.
課堂教學過程設計
一、從學生原有認知結(jié)構(gòu)提出問題
1.小學里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數(shù)?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?
待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內(nèi)容——.
二、講授新課
讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數(shù),根據(jù)溫度計的液面的`不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(邊說邊畫):
1.畫一條水平的'直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))
在此基礎(chǔ)上,給出的定義,即規(guī)定了原點、正方向和單位長度的直線叫做.
進而提問學生:在上,已知一點P表示數(shù)-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向?qū)W生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例 變式練習
例1 畫一個,并在上畫出表示下列各數(shù)的點:
例2 指出上A,B,C,D,E各點分別表示什么數(shù).
課堂練習
示出來.
2.說出下面上A,B,C,D,O,M各點表示什么數(shù)?
最后引導學生得出結(jié)論:正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,零用原點表示.
四、小結(jié)
指導學生閱讀教材后指出:是非常重要的數(shù)學工具,它使數(shù)和直線上的點建立了對應關(guān)系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.
本節(jié)課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數(shù)都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數(shù),至于上的哪些點不能表示有理數(shù),這個問題以后再研究.
五、作業(yè)
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數(shù)的點.
(2)A,H,D,E,O各點分別表示什么數(shù)?
2.在下面上,A,B,C,D各點分別表示什么數(shù)?
3.下列各小題先分別畫出,然后在上畫出表示大括號內(nèi)的一組數(shù)的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初中數(shù)學優(yōu)秀教案15
知識技能目標
1、理解反比例函數(shù)的圖象是雙曲線,利用描點法畫出反比例函數(shù)的圖象,說出它的性質(zhì);
2、利用反比例函數(shù)的圖象解決有關(guān)問題。
過程性目標
1、經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質(zhì);
2、探索反比例函數(shù)的圖象的性質(zhì),體會用數(shù)形結(jié)合思想解數(shù)學問題。
教學過程
一、創(chuàng)設情境
上節(jié)的練習中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。
二、探究歸納
1、畫出函數(shù)的圖象。
分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x≠0。
解
1、列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應值:
2、描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。
3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的圖象。
上述圖象,通常稱為雙曲線(hyperbola)。
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學生試一試:畫出反比例函數(shù)的圖象(學生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟)。
學生討論、交流以下問題,并將討論、交流的結(jié)果回答問題。
1、這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?
2、反比例函數(shù)(k≠0)的圖象在哪兩個象限內(nèi)?由什么確定?
3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質(zhì):
。1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;
。2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。
注
1、雙曲線的兩個分支與x軸和y軸沒有交點;
2、雙曲線的兩個分支關(guān)于原點成中心對稱。
以上兩點性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。
在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。
三、實踐應用
例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。
解由題意,得解得。
例2已知反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過的象限。
分析由于反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點在x軸的上方。
解因為反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過一、二、四象限。
例3已知反比例函數(shù)的圖象過點(1,—2)。
。1)求這個函數(shù)的解析式,并畫出圖象;
(2)若點A(—5,m)在圖象上,則點A關(guān)于兩坐標軸和原點的對稱點是否還在圖象上?
分析(1)反比例函數(shù)的圖象過點(1,—2),即當x=1時,y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點、連線可畫出反比例函數(shù)的圖象;
(2)由點A在反比例函數(shù)的`圖象上,易求出m的值,再驗證點A關(guān)于兩坐標軸和原點的對稱點是否在圖象上。
解(1)設:反比例函數(shù)的解析式為:(k≠0)。
而反比例函數(shù)的圖象過點(1,—2),即當x=1時,y=—2。
所以,k=—2。
即反比例函數(shù)的解析式為:。
。2)點A(—5,m)在反比例函數(shù)圖象上,所以,點A的坐標為。
點A關(guān)于x軸的對稱點不在這個圖象上;
點A關(guān)于y軸的對稱點不在這個圖象上;
點A關(guān)于原點的對稱點在這個圖象上;
例4已知函數(shù)為反比例函數(shù)。
。1)求m的值;
。2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
(3)當—3≤x≤時,求此函數(shù)的最大值和最小值。
解(1)由反比例函數(shù)的定義可知:解得,m=—2。
。2)因為—2<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。
。3)因為在第個象限內(nèi),y隨x的增大而增大,所以當x=時,y最大值=;
當x=—3時,y最小值=。
所以當—3≤x≤時,此函數(shù)的最大值為8,最小值為。
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。
。1)寫出用高表示長的函數(shù)關(guān)系式;
(2)寫出自變量x的取值范圍;
(3)畫出函數(shù)的圖象。
解(1)因為100=5xy,所以。
。2)x>0。
。3)圖象如下:
說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個分支。
四、交流反思
本節(jié)課學習了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。
1、反比例函數(shù)的圖象是雙曲線(hyperbola)。
2、反比例函數(shù)有如下性質(zhì):
。1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;
(2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。
五、檢測反饋
1、在同一直角坐標系中畫出下列函數(shù)的圖象:
(1);(2)。
2、已知y是x的反比例函數(shù),且當x=3時,y=8,求:
。1)y和x的函數(shù)關(guān)系式;
。2)當時,y的值;
。3)當x取何值時,?
3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。
4、已知反比例函數(shù)經(jīng)過點A(2,—m)和B(n,2n),求:
。1)m和n的值;
。2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0
【初中數(shù)學優(yōu)秀教案】相關(guān)文章:
初中數(shù)學優(yōu)秀教案09-29