八年級(jí)數(shù)學(xué)教案錦集(10篇)
作為一名無(wú)私奉獻(xiàn)的老師,通常需要用到教案來(lái)輔助教學(xué),編寫教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。那么寫教案需要注意哪些問(wèn)題呢?以下是小編整理的八年級(jí)數(shù)學(xué)教案,希望能夠幫助到大家。
八年級(jí)數(shù)學(xué)教案1
教材分析
本章屬于“數(shù)與代數(shù)”領(lǐng)域,整式的乘除運(yùn)算和因式分解是基本而重要的代數(shù)初步知識(shí),在后續(xù)的數(shù)學(xué)學(xué)習(xí)中具有重要的意義。本章內(nèi)容建立在已經(jīng)學(xué)習(xí)了有理數(shù)的運(yùn)算,列簡(jiǎn)單的代數(shù)式、一次方程及不等式、整式的加減運(yùn)算等知識(shí)的基礎(chǔ)上,而本節(jié)課的知識(shí)是學(xué)習(xí)本章的基礎(chǔ),為后續(xù)章節(jié)的學(xué)習(xí)作鋪墊,因此,學(xué)得好壞直接關(guān)乎到后續(xù)章節(jié)的學(xué)習(xí)效果。
學(xué)情分析
本節(jié)課知識(shí)是學(xué)習(xí)整章的基礎(chǔ),因此,教學(xué)的好壞直接影響了后續(xù)章節(jié)的學(xué)習(xí)。學(xué)生在學(xué)習(xí)本章前,已經(jīng)掌握了用字母表示數(shù),列簡(jiǎn)單的代數(shù)式,掌握了乘方的'意義及相關(guān)概念,并且本節(jié)課的知識(shí)相對(duì)較簡(jiǎn)單,學(xué)生比較容易理解和掌握,但是教師在教學(xué)中要注意引導(dǎo)學(xué)生導(dǎo)出同底數(shù)冪的乘法的運(yùn)算性質(zhì)的過(guò)程是一個(gè)由特殊到一般的認(rèn)識(shí)過(guò)程,并且注意導(dǎo)出這一性質(zhì)的每一步的根據(jù)。
從學(xué)生做練習(xí)和作業(yè)來(lái)看,大部分學(xué)生都已經(jīng)掌握本節(jié)課的知識(shí),并且掌握的很好,但是還是存在一些問(wèn)題,那就是符號(hào)問(wèn)題,這方面還有待加強(qiáng)。
教學(xué)目標(biāo)
1、知識(shí)與技能:
掌握同底數(shù)冪乘法的運(yùn)算性質(zhì),能熟練運(yùn)用性質(zhì)進(jìn)行同底數(shù)冪乘法運(yùn)算。
2、過(guò)程與方法:
。1)通過(guò)同底數(shù)冪乘法性質(zhì)的推導(dǎo)過(guò)程,體會(huì)不完全歸納法的運(yùn)用,進(jìn)一步發(fā)展演繹推理能力;
。2)通過(guò)性質(zhì)運(yùn)用幫助學(xué)生理解字母表達(dá)式所代表的數(shù)量關(guān)系,進(jìn)一步積累選擇適當(dāng)?shù)某绦蚝退惴ń鉀Q用符號(hào)所表達(dá)問(wèn)題的經(jīng)驗(yàn)。
3、情感態(tài)度與價(jià)值觀:
。1)通過(guò)引例問(wèn)題情境的創(chuàng)設(shè),誘發(fā)學(xué)生的求知欲,進(jìn)一步認(rèn)識(shí)數(shù)學(xué)與生活的密切聯(lián)系;
。2)通過(guò)性質(zhì)的推導(dǎo)體會(huì)“特殊”。
八年級(jí)數(shù)學(xué)教案2
一、教材的地位和作用
現(xiàn)實(shí)生活中,等腰三角形的應(yīng)用比比皆是、所以,利用“軸對(duì)稱”的知識(shí),進(jìn)一步研究等腰三角形的特殊性質(zhì),不僅是現(xiàn)實(shí)生活的需要,而且從思想方法和知識(shí)儲(chǔ)備上,為今后研究“四邊形”和“圓”的性質(zhì)打下堅(jiān)實(shí)的基礎(chǔ)、
性質(zhì)“等腰三角形的兩個(gè)底角相等”是幾何論證過(guò)程中,證明“兩個(gè)角相等”的重要方法之一、“等腰三角形底邊上的三條重要線段重合”的性質(zhì)是今后證明“兩條線段相等” “兩條直線互相垂直”“兩個(gè)角相等”等結(jié)論的重要理論依據(jù)、
教學(xué)重點(diǎn):
1、讓學(xué)生主動(dòng)經(jīng)歷思考和探索的過(guò)程、
2、掌握等腰三角形性質(zhì)及其應(yīng)用、
教學(xué)難點(diǎn):等腰三角形性質(zhì)的理解和探究過(guò)程、
二、學(xué)情分析
本年級(jí)的學(xué)生已經(jīng)研究過(guò)一般三角形的性質(zhì),積累了一定的經(jīng)驗(yàn),動(dòng)手能力強(qiáng),善于與同伴交流,這就為本節(jié)課的學(xué)習(xí)做好了知識(shí)、能力、情感方面的準(zhǔn)備、不同層次的學(xué)生因?yàn)榛A(chǔ)不同,在學(xué)習(xí)中必然會(huì)出現(xiàn)相異構(gòu)想,這也將是我在教學(xué)過(guò)程中著重關(guān)注的一點(diǎn)、
三、目標(biāo)分析
知識(shí)與技能
1、了解等腰三角形的有關(guān)概念和掌握等腰三角形的性質(zhì)
2、了解等邊三角形的概念并探索其性質(zhì)
3、運(yùn)用等腰三角形的性質(zhì)解決問(wèn)題
過(guò)程與方法
1、通過(guò)觀察等腰三角形的對(duì)稱性,發(fā)展學(xué)生的形象思維、
2、探索等腰三角形的性質(zhì)時(shí),經(jīng)歷了觀察、動(dòng)手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)過(guò)程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展了學(xué)生的歸納推理,類比遷移的能力、在與他人交流的過(guò)程中,能運(yùn)用數(shù)學(xué)語(yǔ)言合乎邏輯的進(jìn)行討論和質(zhì)疑,提高了數(shù)學(xué)語(yǔ)言表達(dá)能力、
情感態(tài)度價(jià)值觀:
1、通過(guò)情境創(chuàng)設(shè),使學(xué)生感受到等腰三角形就在自己的身邊,從而使學(xué)生認(rèn)識(shí)到學(xué)習(xí)等腰三角形的必要性、
2、通過(guò)等腰三角形的性質(zhì)的歸納,使學(xué)生認(rèn)識(shí)到科學(xué)結(jié)論的發(fā)現(xiàn),是一個(gè)不斷完善的過(guò)程,培養(yǎng)學(xué)生堅(jiān)強(qiáng)的意志品質(zhì)、
3、通過(guò)小組合作,發(fā)展學(xué)生互幫互助的精神,體驗(yàn)合作學(xué)習(xí)中的樂(lè)趣和成就感、
四、教法分析
根據(jù)學(xué)生已有的認(rèn)知,采取了激疑引趣——猜想探究——應(yīng)用體驗(yàn)——建構(gòu)延伸的教學(xué)模式,并利用多媒體輔助教學(xué)、
設(shè)計(jì)意圖
同學(xué)們,我們?cè)谄吣昙?jí)已研究了一般三角形的性質(zhì),今天我們一起來(lái)探究特殊的'三角形:等腰三角形、
等腰三角形的定義
有兩條邊相等的三角形叫做等腰三角形、
等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角、腰和底邊的夾角叫做底角、
提出問(wèn)題:生活中有哪些現(xiàn)象讓你聯(lián)想到等腰三角形?
首先讓學(xué)生明確:本學(xué)段的幾何圖形都是按一般的到特殊的順序研究的
通過(guò)學(xué)生描述等腰三角形在生活中的應(yīng)用,讓學(xué)生感受到數(shù)學(xué)就在我們身邊,以及研究等腰三角形的必要性、
剪紙游戲
你能利用手中的這個(gè)矩形紙片剪出一個(gè)等腰三角形嗎?注意安全呦!
學(xué)情分析:
大部分學(xué)生會(huì)有自己的想法,根據(jù)軸對(duì)稱圖形的性質(zhì),利用對(duì)折紙片,再“剪一刀”就是就得到了兩條“腰”;
可能還有的同學(xué)會(huì)利用正方形的折法,獲得特殊的等腰直角三角形;
可能還有同學(xué)先畫圖,再依線條剪得、
在這個(gè)過(guò)程中,注重落實(shí)三維目標(biāo)、讓學(xué)生在獲取新知的過(guò)程中更好的認(rèn)識(shí)自我,建立自信、我不失時(shí)機(jī)的對(duì)學(xué)生給予鼓勵(lì)和表?yè)P(yáng),使活動(dòng)更加深入,課堂充滿愉悅和溫馨、
知其然,更重要的是知其所以然、因此,我力求讓學(xué)生關(guān)注剪法的理性思考、
我設(shè)計(jì)了問(wèn)題:你是如何想到的?為的是剖析學(xué)生的思維過(guò)程:“折疊”就是為了得到“對(duì)稱軸”,“剪一刀”就是就得到了兩條“腰”,由“重合”保證了“等腰”、這樣就建立了“操作”與“證明”的中間橋梁、從實(shí)際操作中得到證明的方法,也為發(fā)現(xiàn)“三線合一”做了鋪墊、
提出問(wèn)題:
等腰三角形還有什么性質(zhì)?請(qǐng)?zhí)岢瞿愕牟孪,?yàn)證你的猜想?并填寫在學(xué)案上、
合作小組活動(dòng)規(guī)則:
1、有主記錄員記錄小組的結(jié)論;
2、定出小組的主發(fā)言人(其它同學(xué)可作補(bǔ)充);
3、小組探究出的結(jié)論是什么?
4、說(shuō)明你們小組所獲得結(jié)論的理由、
等腰三角形的性質(zhì):
性質(zhì)一:等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱“等邊對(duì)等角”)、
性質(zhì)二:等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(簡(jiǎn)稱“三線合一”)、
學(xué)情分析:這個(gè)環(huán)節(jié)是本節(jié)課的重點(diǎn),也是教學(xué)難點(diǎn)、盡管在教學(xué)過(guò)程中,因?yàn)閷W(xué)生的相異構(gòu)想,數(shù)學(xué)猜想的初始敘述不準(zhǔn)確,甚至不正確,但我不會(huì)立即去糾正他們,而是讓同學(xué)們不斷地質(zhì)疑﹑辨析、研討和歸納,逐漸完善結(jié)論、讓他們真正經(jīng)歷數(shù)學(xué)知識(shí)的形成過(guò)程,真正的體現(xiàn)以人為本的教學(xué)理念,努力創(chuàng)設(shè)和諧的教育教學(xué)的生態(tài)環(huán)境、
通過(guò)設(shè)置恰當(dāng)?shù)膭?dòng)手實(shí)踐活動(dòng),引導(dǎo)學(xué)生經(jīng)歷觀察、動(dòng)手實(shí)踐、猜想、驗(yàn)證等數(shù)學(xué)探究活動(dòng),這種探究的學(xué)習(xí)過(guò)程,恰恰是研究幾何圖形性質(zhì)的一般規(guī)律和方法、
(1)在此環(huán)節(jié)中,我的教學(xué)要充分把握好“四讓”:能讓學(xué)生觀察的,盡量讓學(xué)生觀察;能讓學(xué)生思考的,盡量讓學(xué)生思考;能讓學(xué)生表達(dá)的,盡量讓學(xué)生表達(dá);能讓學(xué)生作結(jié)論的,盡量讓學(xué)生作結(jié)論、
這種教學(xué)方式,把學(xué)習(xí)的過(guò)程真正還給學(xué)生,不怕學(xué)生說(shuō)不好,不怕學(xué)生出問(wèn)題,其實(shí)學(xué)生說(shuō)不好的地方、學(xué)生出問(wèn)題的地方都正是我們應(yīng)該教的地方,是教學(xué)的切入點(diǎn)、著眼點(diǎn)、增長(zhǎng)點(diǎn)、
(2)教師在這個(gè)過(guò)程中,充分聽(tīng)取和參與學(xué)生的小組討論,對(duì)有困難的學(xué)生,及時(shí)指導(dǎo)、
鞏固知識(shí)
1、等腰三角形頂角為70°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為________;
2、等腰三角形一個(gè)角為70°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_____;
3、等腰三角形一個(gè)角為100°,它的另外兩個(gè)內(nèi)角的度數(shù)分別為_____、
內(nèi)化知識(shí)
1、如圖1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度數(shù)嗎?
知識(shí)遷移
等邊三角形有什么特殊的性質(zhì)?簡(jiǎn)單地?cái)⑹隼碛伞?/p>
等邊三角形的性質(zhì)定理:
等邊三角形的各角都相等,并且每一個(gè)角都等于60°、
拓展延伸
如圖2,在△ABC中,AB=AC,點(diǎn)D,E在BC上,AD=AE,你能說(shuō)明BD=EC?
由于學(xué)生之間存在知識(shí)基礎(chǔ)、經(jīng)驗(yàn)和能力的差異,我為學(xué)生提供了層次分明的反饋練習(xí)、將練習(xí)從易到難,從簡(jiǎn)到繁,以適應(yīng)不同階段、不同層次的學(xué)生的需要、讓學(xué)生拾階而上,逐步掌握知識(shí),使學(xué)困生達(dá)到簡(jiǎn)單運(yùn)用水平,中等生達(dá)到綜合運(yùn)用水平,優(yōu)等生達(dá)到創(chuàng)建水平、
暢談收獲
總結(jié)活動(dòng)情況,重在肯定與鼓勵(lì)、引導(dǎo)學(xué)生從本課學(xué)習(xí)中所得到的新知識(shí),運(yùn)用的數(shù)學(xué)思想方法,新舊知識(shí)的聯(lián)系等方面進(jìn)行反思,提高學(xué)生自主建構(gòu)知識(shí)網(wǎng)絡(luò)、分析解決問(wèn)題的能力、
幫助學(xué)生梳理知識(shí),回顧探究過(guò)程中所用到的從特殊到一般的數(shù)學(xué)方法,啟發(fā)學(xué)生更深層次的思考,為學(xué)生的下一步學(xué)習(xí)做好鋪墊、
反思過(guò)程不僅是學(xué)生學(xué)習(xí)過(guò)程的繼續(xù),更重要的是一種提高和發(fā)展自己的過(guò)程、
基礎(chǔ)性作業(yè):P65習(xí)題1、2、3、4
八年級(jí)數(shù)學(xué)教案3
一、創(chuàng)設(shè)情境
在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問(wèn)題.
問(wèn)題1如圖是某地一天內(nèi)的氣溫變化圖.
看圖回答:
。1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為多少?任意給出這天中的某一時(shí)刻,說(shuō)出這一時(shí)刻的氣溫.
(2)這一天中,最高氣溫是多少?最低氣溫是多少?
。3)這一天中,什么時(shí)段的氣溫在逐漸升高?什么時(shí)段的氣溫在逐漸降低?
解(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為-1℃、2℃、5℃;
。2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;
(3)這一天中,3時(shí)~14時(shí)的氣溫在逐漸升高.0時(shí)~3時(shí)和14時(shí)~24時(shí)的氣溫在逐漸降低.
從圖中我們可以看到,隨著時(shí)間t(時(shí))的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關(guān)系呢?
二、探究歸納
問(wèn)題2銀行對(duì)各種不同的.存款方式都規(guī)定了相應(yīng)的利率,下表是20xx年7月中國(guó)工商銀行為“整存整取”的存款方式規(guī)定的年利率:
觀察上表,說(shuō)說(shuō)隨著存期x的增長(zhǎng),相應(yīng)的年利率y是如何變化的.
解隨著存期x的增長(zhǎng),相應(yīng)的年利率y也隨著增長(zhǎng).
問(wèn)題3收音機(jī)刻度盤的波長(zhǎng)和頻率分別是用米(m)和千赫茲(kHz)為單位標(biāo)刻的.下面是一些對(duì)應(yīng)的數(shù)值:
觀察上表回答:
(1)波長(zhǎng)l和頻率f數(shù)值之間有什么關(guān)系?
(2)波長(zhǎng)l越大,頻率f就________.
解(1)l與f的乘積是一個(gè)定值,即
lf=300000,或者說(shuō).
。2)波長(zhǎng)l越大,頻率f就 越小 .
問(wèn)題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關(guān)系:S=_________.
利用這個(gè)關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時(shí)圓的面積,并將結(jié)果填入下表:
由此可以看出,圓的半徑越大,它的面積就_________.
解S=πr2.
圓的半徑越大,它的面積就越大.
在上面的問(wèn)題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會(huì)發(fā)生變化的量.例如問(wèn)題1中,刻畫氣溫變化規(guī)律的量是時(shí)間t和氣溫T,氣溫T隨著時(shí)間t的變化而變化,它們都會(huì)取不同的數(shù)值.像這樣在某一變化過(guò)程中,可以取不同數(shù)值的量,叫做變量(variable).
上面各個(gè)問(wèn)題中,都出現(xiàn)了兩個(gè)變量,它們互相依賴,密切相關(guān).一般地,如果在一個(gè)變化過(guò)程中,有兩個(gè)變量,例如x和y,對(duì)于x的每一個(gè)值
八年級(jí)數(shù)學(xué)教案4
【教學(xué)目標(biāo)】
1.了解分式概念。
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件。
【教學(xué)重難點(diǎn)】
重點(diǎn):理解分式有意義的條件,分式的值為零的`條件。
難點(diǎn):能熟練地求出分式有意義的條件,分式的值為零的條件。
【教學(xué)過(guò)程】
一、課堂導(dǎo)入
1.讓學(xué)生填寫[思考],學(xué)生自己依次填出:,,,.
2.問(wèn)題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?
設(shè)江水的流速為x千米/時(shí)。
輪船順流航行100千米所用的時(shí)間為小時(shí),逆流航行60千米所用時(shí)間小時(shí),所以=.
3.以上的式子,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式。分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母。
[思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零。注意只有滿足了分式的分母不能為零這個(gè)條件,分式才有意義。即當(dāng)B≠0時(shí),分式才有意義。
二、例題講解
例1:當(dāng)x為何值時(shí),分式有意義。
【分析】已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解出字母x的取值范圍。
(補(bǔ)充)例2:當(dāng)m為何值時(shí),分式的值為0?
(1);(2);(3).
【分析】分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解。
三、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4,,,,,2.當(dāng)x取何值時(shí),下列分式有意義?
3.當(dāng)x為何值時(shí),分式的值為0?
四、小結(jié)
談?wù)勀愕氖斋@。
五、布置作業(yè)
課本128~129頁(yè)練習(xí)。
八年級(jí)數(shù)學(xué)教案5
教學(xué)目標(biāo):
1.知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù)).
2.掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).
3.會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).
教學(xué)重點(diǎn):
掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì)。
難點(diǎn):
會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù)。
情感態(tài)度與價(jià)值觀:
通過(guò)學(xué)習(xí)課堂知識(shí)使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來(lái)源于實(shí)踐,服務(wù)于實(shí)踐。能利用事物之間的類比性解決問(wèn)題.
教學(xué)過(guò)程:
一、課堂引入
1.回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì):
。1)同底數(shù)的冪的乘法:am?an = am+n (m,n是正整數(shù));
。2)冪的乘方:(am)n = amn (m,n是正整數(shù));
(3)積的乘方:(ab)n = anbn (n是正整數(shù));
。4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n);
。5)商的乘方:()n = (n是正整數(shù));
2.回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時(shí),a0 = 1.
3.你還記得1納米=10?9米,即1納米=米嗎?
4.計(jì)算當(dāng)a≠0時(shí),a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個(gè)條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。
二、總結(jié): 一般地,數(shù)學(xué)中規(guī)定: 當(dāng)n是正整數(shù)時(shí),=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學(xué)生由特殊情形入手,來(lái)看這條性質(zhì)是否成立. 事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運(yùn)算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的.
三、科學(xué)記數(shù)法:
我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的`正數(shù)也可以用科學(xué)記數(shù)法來(lái)表示,例如:0.000012 = 1.2×10?5. 即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù)。 啟發(fā)學(xué)生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對(duì)于一個(gè)小于1的正數(shù),如果小數(shù)點(diǎn)后到第一個(gè)非0數(shù)字前有8個(gè)0,用科學(xué)記數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)是?9,如果有m個(gè)0,則10的指數(shù)應(yīng)該是?m?1.
八年級(jí)數(shù)學(xué)教案6
一、課堂導(dǎo)入
回顧平行四邊的性質(zhì)定理及定義
1、什么叫平行四邊形?平行四邊形有什么性質(zhì)?
2、將以上的性質(zhì)定理,分別用命題形式敘述出來(lái)。(如果……那么……)
根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質(zhì),那么如何來(lái)判定一個(gè)四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質(zhì)定理的逆命題是否成立?
二、新課講解
平行四邊形的.判定:
(定義法):兩組對(duì)邊分別平行的四邊形的平邊形。
幾何語(yǔ)言表達(dá)定義法:
∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形
解析:一個(gè)四邊形只要其兩組對(duì)邊分別互相平行,則可判定這個(gè)四邊形是一個(gè)平行四邊形。
活動(dòng):用做好的紙條拼成一個(gè)四邊形,其中強(qiáng)調(diào)兩組對(duì)邊分別相等。
。ㄆ叫兴倪呅闻卸ǘɡ恚
(一)兩組對(duì)邊分別相等的四邊形是平行四邊形。
設(shè)問(wèn):這個(gè)命題的前提和結(jié)論是什么?
已知:四邊形ABCD中,AB=CD,BC=DA。
求證:四邊ABCD是平行四邊形。
分析:判定平行四邊形的依據(jù)目前只有定義,也就是須證明兩組對(duì)邊分別平行,當(dāng)然是借助第三條直線證明角等。連結(jié)BD。易證三角形全等。
板書證明過(guò)程。
小結(jié):用幾何語(yǔ)言表達(dá)用定義法和剛才證明為正確的方法證明一個(gè)四邊形是平行四邊形的方法為:
平行四邊形判定定理1:二組對(duì)邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形
。ǘ┰O(shè)問(wèn):若一個(gè)四邊形有一組對(duì)邊平行且相等,能否判定這個(gè)四邊形也是平行四邊形呢?
活動(dòng):課本探究?jī)?nèi)容,并用事準(zhǔn)備好的紙條(紙條的長(zhǎng)度相等),先將紙條放置不平行位置,讓學(xué)生設(shè)想若二紙條的端點(diǎn)為四邊形的頂點(diǎn),則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點(diǎn)為頂點(diǎn)組成的四邊形是不是平行四邊形?
設(shè)問(wèn):我們能否用推理的方法證明這個(gè)命題是正確的呢?(讓學(xué)生找出題設(shè)、結(jié)論,然后寫出已知、求證及證明過(guò)程。)
八年級(jí)數(shù)學(xué)教案7
一元二次方程根與系數(shù)的關(guān)系的知識(shí)內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過(guò)一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過(guò)4個(gè)例題介紹了利用根與系數(shù)的關(guān)系簡(jiǎn)化一些計(jì)算的知識(shí)。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問(wèn)題,由方程的根確定方程的系數(shù)的方法等等。
根與系數(shù)的關(guān)系也稱為韋達(dá)定理(韋達(dá)是法國(guó)數(shù)學(xué)家)。韋達(dá)定理是初中代數(shù)中的一個(gè)重要定理。這是因?yàn)橥ㄟ^(guò)韋達(dá)定理的學(xué)習(xí),把一元二次方程的研究推向了高級(jí)階段,運(yùn)用韋達(dá)定理可以進(jìn)一步研究數(shù)學(xué)中的許多問(wèn)題,如二次三項(xiàng)式的因式分解,解二元二次方程組;韋達(dá)定理對(duì)后面函數(shù)的學(xué)習(xí)研究也是作用非凡。
通過(guò)近些年的中考數(shù)學(xué)試卷的分析可以得出:韋達(dá)定理及其應(yīng)用是各地市中考數(shù)學(xué)命題的熱點(diǎn)之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來(lái),形成難度系數(shù)較大的壓軸題。
通過(guò)韋達(dá)定理的教學(xué),可以培養(yǎng)學(xué)生的.創(chuàng)新意識(shí)、創(chuàng)新精神和綜合分析數(shù)學(xué)問(wèn)題的能力,也為學(xué)生今后學(xué)習(xí)方程理論打下基礎(chǔ)。
(二)重點(diǎn)、難點(diǎn)
一元二次方程根與系數(shù)的關(guān)系是重點(diǎn),讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語(yǔ)言表述,以及由一個(gè)已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點(diǎn)。
(三)教學(xué)目標(biāo)
1、知識(shí)目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運(yùn)用根與系數(shù)的關(guān)系由已知一元二次方程的一個(gè)根求出另一個(gè)根與未知數(shù),會(huì)求一元二次方程兩個(gè)根的倒數(shù)和與平方數(shù),兩根之差。
八年級(jí)數(shù)學(xué)教案8
教學(xué)目標(biāo):
【知識(shí)與技能】
1、理解并掌握等腰三角形的性質(zhì)。
2、會(huì)用符號(hào)語(yǔ)言表示等腰三角形的性質(zhì)。
3、能運(yùn)用等腰三角形性質(zhì)進(jìn)行證明和計(jì)算。
【過(guò)程與方法】
1、通過(guò)觀察等腰三角形的對(duì)稱性,發(fā)展學(xué)生的形象思維。
2、通過(guò)實(shí)踐、觀察、證明等腰三角形的性質(zhì),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),感受數(shù)學(xué)思考過(guò)程的條理性,發(fā)展學(xué)生的合情推理能力。
3、通過(guò)運(yùn)用等腰三角形的性質(zhì)解決有關(guān)問(wèn)題,提高學(xué)生運(yùn)用幾何語(yǔ)言表達(dá)問(wèn)題的,運(yùn)用知識(shí)和技能解決問(wèn)題的能力。
【情感態(tài)度】
引導(dǎo)學(xué)生對(duì)圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識(shí)解答問(wèn)題的活動(dòng)中取得成功的體驗(yàn)。
【教學(xué)重點(diǎn)】
等腰三角形的性質(zhì)及應(yīng)用。
【教學(xué)難點(diǎn)】
等腰三角形的證明。
教學(xué)過(guò)程:
一、情境導(dǎo)入,初步認(rèn)識(shí)
問(wèn)題1什么叫等腰三角形?它是一個(gè)軸對(duì)稱圖形嗎?請(qǐng)根據(jù)自己的理解,利用軸對(duì)稱的知識(shí),自己做一個(gè)等腰三角形。要求學(xué)生獨(dú)立思考,動(dòng)手作圖后再互相交流評(píng)價(jià)。
可按下列方法做出:
作一條直線l,在l上取點(diǎn)A,在l外取點(diǎn)B,作出點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)C,連接AB,AC,CB,則可得到一個(gè)等腰三角形。
問(wèn)題2每位同學(xué)請(qǐng)拿出事先準(zhǔn)備好的長(zhǎng)方形紙片,按下圖方式折疊剪裁,再把它展開,觀察并討論:得到的△ABC有什么特點(diǎn)?
教師指導(dǎo):上述過(guò)程中,剪刀剪過(guò)的兩條邊是相等的,即△ABC中AB=AC,所以△ABC是等腰三角形。
把剪出的等腰三角形ABC沿折痕對(duì)折,找出其中重合的線段和角。由這些重合的線段和角,你能發(fā)現(xiàn)等腰三角形的性質(zhì)嗎?說(shuō)說(shuō)你的猜想。
在一張白紙上任意畫一個(gè)等腰三角形,把它剪下來(lái),請(qǐng)你試著折一折。你的猜想仍然成立嗎?
教學(xué)說(shuō)明:通過(guò)學(xué)生的動(dòng)手操作與觀察發(fā)現(xiàn),加深學(xué)生對(duì)等腰三角形性質(zhì)的理解。
二、思考探究,獲取新知
教師依據(jù)學(xué)生討論發(fā)言的情況,歸納等腰三角形的性質(zhì):
、佟螧=∠C→兩個(gè)底角相等。
②BD=CD→AD為底邊BC上的中線。
、邸螧AD=∠CAD→AD為頂角∠BAC的平分線。
∠ADB=∠ADC=90°→AD為底邊BC上的高。
指導(dǎo)學(xué)生用語(yǔ)言敘述上述性質(zhì)。
性質(zhì)1等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成:“等邊對(duì)等角”)。
性質(zhì)2等腰三角形的頂角平分線、底邊上的中線,底邊上的高重合(簡(jiǎn)記為:“三線合一”)。
教師指導(dǎo)對(duì)等腰三角形性質(zhì)的證明。
1、證明等腰三角形底角的性質(zhì)。
教師要求學(xué)生根據(jù)猜想的結(jié)論畫出相應(yīng)的圖形,寫出已知和求證。在引導(dǎo)學(xué)生分析思路時(shí)強(qiáng)調(diào):
(1)利用三角形全等來(lái)證明兩角相等。為證∠B=∠C,需證明以∠B,∠C為元素的兩個(gè)三角形全等,需要添加輔助線構(gòu)造符合證明要求的兩個(gè)三角形。
。2)添加輔助線的方法可以有多種方式:如作頂角平分線,或作底邊上的中線,或作底邊上的高等。
2、證明等腰三角形“三線合一”的性質(zhì)。
【教學(xué)說(shuō)明】在證明中,設(shè)計(jì)輔助線是關(guān)鍵,引導(dǎo)學(xué)生用全等的方法去處理,在不同的輔助線作法中,由輔助線帶來(lái)的條件是不同的,重視這一點(diǎn),要求學(xué)生板書證明過(guò)程,以體會(huì)一題多解帶來(lái)的體驗(yàn)。
三、典例精析,掌握新知
例如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。
解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等邊對(duì)等角)。
設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,從而∠ABC=∠C=∠BDC=2x。
于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°
于是在△ABC中,有∠A=36°,∠ABC=∠C=72°。
【教學(xué)說(shuō)明】等腰三角形“等邊對(duì)等角”及“三線合一”性質(zhì),可以實(shí)現(xiàn)由邊到角的轉(zhuǎn)化,從而可求出相應(yīng)角的.度數(shù)。要在解題過(guò)程中,學(xué)會(huì)從復(fù)雜圖形中分解出等腰三角形,用方程思想和數(shù)形結(jié)合思想解決幾何問(wèn)題。
四、運(yùn)用新知,深化理解
第1組練習(xí):
1、如圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)。
如圖,△ABC是等腰直角三角形,AB=AC,∠BAC=90°,AD是底邊BC上的高,標(biāo)出∠B,∠C,∠BAD,∠DAC的度數(shù),指出圖中有哪些相等線段。
2、如圖,在△ABC,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)。
第2組練習(xí):
1、如果△ABC是軸對(duì)稱圖形,則它一定是( )
A、等邊三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形
2、等腰三角形的一個(gè)外角是100°,它的頂角的度數(shù)是( )
A、80° B、20°
C、80°和20° D、80°或50°
3、已知等腰三角形的腰長(zhǎng)比底邊多2cm,并且它的周長(zhǎng)為16cm。求這個(gè)等腰三角形的邊長(zhǎng)。
4、如圖,在△ABC中,過(guò)C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E。求證:AE=CE。
【教學(xué)說(shuō)明】
等腰三角形解邊方面的計(jì)算類型較多,引導(dǎo)學(xué)生見(jiàn)識(shí)不同類型,并適時(shí)概括歸納,幫學(xué)生形成解題能力,注意提醒學(xué)生分類討論思想的應(yīng)用。
【答案】
第1組練習(xí)答案:
1、(1)72°;(2)30°
2、∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD
3、∠B=77°,∠C=38、5°
第2組練習(xí)答案:
1、C
2、C
3、設(shè)三角形的底邊長(zhǎng)為xcm,則其腰長(zhǎng)為(x+2)cm,根據(jù)題意,得2(x+2)+x=16。解得x=4!嗟妊切蔚娜呴L(zhǎng)為4cm,6cm和6cm。
4、延長(zhǎng)CD交AB的延長(zhǎng)線于P,在△ADP和△ADC中,∠PAD=∠CAD,AD=AD,∠PDA=∠CDA,∴△ADP≌△ADC!唷螾=∠ACD。又∵DE∥AP,∴∠CDE=∠P。∴∠CDE=∠ACD,∴DE=EC。同理可證:AE=DE!郃E=CE。
四、師生互動(dòng),課堂小結(jié)
這節(jié)課主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用。請(qǐng)學(xué)生表述性質(zhì),提醒每個(gè)學(xué)生要靈活應(yīng)用它們。
學(xué)生間可交流體會(huì)與收獲。
八年級(jí)數(shù)學(xué)教案9
一、學(xué)習(xí)目標(biāo)
1、多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用。
2、多項(xiàng)式除以單項(xiàng)式的運(yùn)算算理。
二、重點(diǎn)難點(diǎn)
重點(diǎn):多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則及其應(yīng)用。
難點(diǎn):探索多項(xiàng)式與單項(xiàng)式相除的運(yùn)算法則的過(guò)程。
三、合作學(xué)習(xí)
。ㄒ唬┗仡檰雾(xiàng)式除以單項(xiàng)式法則
(二)學(xué)生動(dòng)手,探究新課
1、計(jì)算下列各式:
。1)(am+bm)÷m;
(2)(a2+ab)÷a;
。3)(4_2y+2_y2)÷2_y。
2、提問(wèn):
、僬f(shuō)說(shuō)你是怎樣計(jì)算的;
、谶有什么發(fā)現(xiàn)嗎?
。ㄈ┛偨Y(jié)法則
1、多項(xiàng)式除以單項(xiàng)式:先把這個(gè)多項(xiàng)式的每一項(xiàng)除以___________,再把所得的商______
2、本質(zhì):把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成______________
四、精講精練
例:(1)(12a3—6a2+3a)÷3a;
(2)(21_4y3—35_3y2+7_2y2)÷(—7_2y);
(3)[(_+y)2—y(2_+y)—8_]÷2_;
。4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
隨堂練習(xí):教科書練習(xí)。
五、小結(jié)
1、單項(xiàng)式的除法法則
2、應(yīng)用單項(xiàng)式除法法則應(yīng)注意:
A、系數(shù)先相除,把所得的'結(jié)果作為商的系數(shù),運(yùn)算過(guò)程中注意單項(xiàng)式的系數(shù)飽含它前面的符號(hào);
B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù);
C、被除式單獨(dú)有的字母及其指數(shù),作為商的一個(gè)因式,不要遺漏;
D、要注意運(yùn)算順序,有乘方要先做乘方,有括號(hào)先算括號(hào)里的,同級(jí)運(yùn)算從左到右的順序進(jìn)行;
E、多項(xiàng)式除以單項(xiàng)式法則。
八年級(jí)數(shù)學(xué)教案10
一、教學(xué)目的
1.使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義.
2.使學(xué)生會(huì)用描點(diǎn)法畫出簡(jiǎn)單函數(shù)的圖象.
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):1.理解與認(rèn)識(shí)函數(shù)圖象的意義.
2.培養(yǎng)學(xué)生的看圖、識(shí)圖能力.
難點(diǎn):在畫圖的三個(gè)步驟的'列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對(duì)應(yīng)值問(wèn)題.
三、教學(xué)過(guò)程
復(fù)習(xí)提問(wèn)
1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)
2.結(jié)合函數(shù)y=x的圖象,說(shuō)明什么是函數(shù)的圖象?
3.說(shuō)出下列各點(diǎn)所在象限或坐標(biāo)軸:
新課
1.畫函數(shù)圖象的方法是描點(diǎn)法.其步驟:
(1)列表.要注意適當(dāng)選取自變量與函數(shù)的對(duì)應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個(gè)關(guān)鍵點(diǎn).比如畫函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如M(3,9)就可以了.
一般地,我們把自變量與函數(shù)的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對(duì)應(yīng)值列出表來(lái).
。2)描點(diǎn).我們把表中給出的有序?qū)崝?shù)對(duì),看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點(diǎn).
。3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線.
一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的幾個(gè)點(diǎn)連成表示函數(shù)的曲線(或直線).
2.講解畫函數(shù)圖象的三個(gè)步驟和例.畫出函數(shù)y=x+0.5的圖象.
小結(jié)
本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個(gè)步驟,自己動(dòng)手畫圖.
練習(xí)
、龠x用課本練習(xí)(前一節(jié)已作:列表、描點(diǎn),本節(jié)要求連線)
②補(bǔ)充題:畫出函數(shù)y=5x-2的圖象.
作業(yè)
選用課本習(xí)題.
四、教學(xué)注意問(wèn)題
1.注意滲透數(shù)形結(jié)合思想.通過(guò)研究函數(shù)的圖象,對(duì)圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí).把函數(shù)的解析式、列表、圖象三者結(jié)合起來(lái),更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征.
2.注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫圖的積極性.
3.認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力.
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
有關(guān)八年級(jí)數(shù)學(xué)教案八年級(jí)數(shù)學(xué)教案全套10-03
【推薦】八年級(jí)數(shù)學(xué)教案01-31
【熱門】八年級(jí)數(shù)學(xué)教案01-31