国产真实乱子伦精品,国产精品100页,美女网站色免费,国产白嫩美女免费观看,欧美精品亚洲,欧美韩国xxx,欧美性猛交xxxxxxxx软件

最簡二次根式 教學(xué)設(shè)計示例4

時間:2023-05-02 02:23:26 初中數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

最簡二次根式 教學(xué)設(shè)計示例4

教學(xué)目標(biāo) 

最簡二次根式 教學(xué)設(shè)計示例4

1.使學(xué)生理解最簡二次根式的概念;

2.掌握把二次根式化為最簡二次根式的方法.

教學(xué)重點和難點

重點:化二次根式為最簡二次根式的方法.

難點:最簡二次根式概念的理解.

教學(xué)過程 設(shè)計

一、導(dǎo)入  新課

計算:

我們再看下面的問題:

簡,得到

從上面例子可以看出,如果把二次根式先進行化簡,會對解決問題帶來方便.

二、新課

答:

1.被開方數(shù)的因數(shù)是整數(shù)或整式;

2.被開方數(shù)中不含能開得盡方的因數(shù)或因式.

滿足上面兩個條件的二次根式叫做最簡二次根式.

例1 試判斷下列各式中哪些是最簡二次根式,哪些不是?為什么?

解 (l)不是最簡二次根式.因為a3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式.

整數(shù).

(3)是最簡二次根式.因為被開方數(shù)的因式x2+y2開不盡方,而且是整式.

(4)是最簡二次根式.因為被開方數(shù)的因式a-b開不盡方,而且是整式.

(5)是最簡二次根式.因為被開方數(shù)的因式5x開不盡方,而且是整式.

(6)不是最簡二次根式.因為被開方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22.

指出:從(1),(2),(6)題可以看到如下兩個結(jié)論.

1.在二次根式的被開方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡二次根式;

2.在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式.

例2 把下列各式化為最簡二次根式:

分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)

例3 把下列各式化成最簡二次根式:

分析:題(l)的被開方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡二次根式.

題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式.

通過例2、例3,請同學(xué)們總結(jié)出把二次根式化成最簡二次根式的方法.

答:如果被開方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡.

如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡.

三、課堂練習(xí)

1.在下列各式中,是最簡二次根式的式子為 [ ]

的二次根式的式子有_____個. [ ]

A.2 B.3

C.1 D.0

3.把下列各式化成最簡二次根式:

答案:

1.B

2.B

四、小結(jié)

1.最簡二次根式必須滿足兩個條件:

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式.

2.把一個式子化為最簡二次根式的方法是:

(1)如果被開方數(shù)是整式或整數(shù),先把它分解成因式(或因數(shù))的積的形式,把開得盡方的因式(或因數(shù))移到根號外;

(2)如果被開方數(shù)含有分母,應(yīng)去掉分母的根號.

五、作業(yè) 

1.把下列各式化成最簡二次根式:

2.把下列各式化成最簡二次根式:

答案:

最簡二次根式 教學(xué)設(shè)計示例4

【最簡二次根式 教學(xué)設(shè)計示例4】相關(guān)文章:

關(guān)于把二次根式化為最簡二次根式的習(xí)題04-28

關(guān)于最簡二次根式概念的習(xí)題04-28

二次根式教學(xué)反思04-07

二次根式的加減教學(xué)反思04-30

二次根式的除法教學(xué)反思04-29

二次根式單元教學(xué)反思04-30

二次根式的運算教學(xué)反思10-23

二次根式單元的教學(xué)反思04-29

《二次根式》教學(xué)反思范文04-29

二次根式的化簡教學(xué)反思04-27