初中數(shù)學(xué)八年級(jí)上冊(cè)教案
作為一名辛苦耕耘的教育工作者,通常需要用到教案來輔助教學(xué),教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。如何把教案做到重點(diǎn)突出呢?以下是小編為大家收集的初中數(shù)學(xué)八年級(jí)上冊(cè)教案,歡迎閱讀與收藏。
初中數(shù)學(xué)八年級(jí)上冊(cè)教案1
《正方形》教學(xué)設(shè)計(jì)
教學(xué)內(nèi)容分析:
、艑W(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。
、魄懊鎸W(xué)習(xí)了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對(duì)正方形的研究。
⑶對(duì)本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類研究的思想,并且建立新舊知識(shí)的聯(lián)系,類比的基礎(chǔ)上進(jìn)行歸納,梳理知識(shí),進(jìn)一步發(fā)展學(xué)生的推理能力。
學(xué)生分析:
⑴學(xué)生在小學(xué)初步認(rèn)識(shí)了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗(yàn)與知識(shí)基礎(chǔ)。
、茖W(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對(duì)于證明,學(xué)生的思維能力還不成熟,有待于提高。
教學(xué)目標(biāo):
、胖R(shí)與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會(huì)利用性質(zhì)與判定進(jìn)行簡單的說理。
、七^程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運(yùn)用提高學(xué)生的推理能力。
⑶情感態(tài)度與價(jià)值觀:在學(xué)習(xí)中體會(huì)正方形的完美性,通過活動(dòng)獲得成功的喜悅與自信。
重點(diǎn):掌握正方形的性質(zhì)與判定,并進(jìn)行簡單的推理。
難點(diǎn):探索正方形的判定,發(fā)展學(xué)生的推理能
教學(xué)方法:類比與探究
教具準(zhǔn)備:可以活動(dòng)的四邊形模型。
一、教學(xué)分析
(一)教學(xué)內(nèi)容分析
1.教材:義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》九年級(jí)上冊(cè)(人民教育出版社)
2.本課教學(xué)內(nèi)容的地位、作用,知識(shí)的前后聯(lián)系
《中心對(duì)稱圖形》是新人教版九年級(jí)數(shù)學(xué)上冊(cè)第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學(xué)習(xí)了“軸對(duì)稱和軸對(duì)稱圖形”、“旋轉(zhuǎn)和中心對(duì)稱”后的一種對(duì)稱圖形,因此涉及歸納、類比等思想方法,對(duì)激發(fā)學(xué)生探索精神和創(chuàng)新意識(shí)等方面都有重要意義。
3.本課教學(xué)內(nèi)容的特點(diǎn),重點(diǎn)分析體現(xiàn)新課程理念的特點(diǎn)
本節(jié)課主要介紹中心對(duì)稱圖形的概念、中心對(duì)稱圖形的識(shí)別、中心對(duì)稱圖形與軸對(duì)稱圖形與中心對(duì)稱的比較、中心對(duì)稱圖形的性質(zhì)。為使學(xué)生感受、理解知識(shí)的產(chǎn)生和發(fā)展過程,培養(yǎng)學(xué)生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉(zhuǎn)對(duì)稱圖形引出中心對(duì)稱圖形的概念;(2)引導(dǎo)學(xué)生觀察、猜想、實(shí)驗(yàn)、歸納、類比等方法探究中心對(duì)稱圖形的.性質(zhì),(3)通過多媒體演示使學(xué)生對(duì)中心對(duì)稱圖形的性質(zhì)有直觀的表象。我認(rèn)為這環(huán)環(huán)相扣、層層深入、循序漸進(jìn)的活動(dòng)過程,符合新課程標(biāo)準(zhǔn)理念和學(xué)生建構(gòu)知識(shí)的規(guī)律,有利于激發(fā)學(xué)生的學(xué)習(xí)情趣。
(二)教學(xué)對(duì)象分析
1.學(xué)生所在地區(qū)、學(xué)校及班級(jí)的特色
我授課的班級(jí)是西安市閻良區(qū)振興中學(xué)九年級(jí)一班,作為九年級(jí)的學(xué)生,在圖形的對(duì)稱方面已經(jīng)積累一些經(jīng)驗(yàn),已經(jīng)具有一定的觀察、猜想、實(shí)驗(yàn)、歸納、類比等研究圖形對(duì)稱變換的能力;班級(jí)學(xué)生具有個(gè)性活潑,思維活躍,對(duì)各種事物充滿好奇,學(xué)習(xí)情緒易于調(diào)動(dòng),學(xué)習(xí)積極性高的特點(diǎn),但學(xué)生的抽象思維能力個(gè)體差異較大,并且班級(jí)中已出現(xiàn)分化現(xiàn)象。
2.學(xué)生的年齡特點(diǎn)和認(rèn)知特點(diǎn)
班級(jí)學(xué)生的年齡大多在15歲到17歲間。他們已具備了一定的獨(dú)立分析、解決問題的能力,表現(xiàn)欲望較為強(qiáng)烈,喜好發(fā)表個(gè)人見解并且具有一定的合作交流、共同探討的意識(shí)與經(jīng)驗(yàn),因此在課程內(nèi)容的安排中,適當(dāng)?shù)貏?chuàng)設(shè)一些具有一定思維深度的問題,加強(qiáng)學(xué)生在學(xué)習(xí)過程中自主探索與合作交流的緊密結(jié)合,促使學(xué)生在探究的過程中,更多地獲得成功的體驗(yàn),感受學(xué)習(xí)思考的樂趣。
教學(xué)過程:
一:復(fù)習(xí)鞏固,建立聯(lián)系。
【教師活動(dòng)】
問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?
、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。
【學(xué)生活動(dòng)】
學(xué)生回憶,并舉手回答,對(duì)于填空題,讓更多的學(xué)生參與,說出更多的答案。
【教師活動(dòng)】
評(píng)析學(xué)生的結(jié)果,給予表揚(yáng)。
總結(jié)性質(zhì)從邊角對(duì)角線考慮,在填空時(shí)也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。
二:動(dòng)手操作,探索發(fā)現(xiàn)。
活動(dòng)一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?
【學(xué)生活動(dòng)】
學(xué)生拿出自備矩形紙片,動(dòng)手操作,不難發(fā)現(xiàn)它是正方形。
設(shè)置問題:①什么是正方形?
觀察發(fā)現(xiàn),從活動(dòng)中體會(huì)。
【教師活動(dòng)】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。
【學(xué)生活動(dòng)】認(rèn)真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。
設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學(xué)生活動(dòng)】
小組討論,分組回答。
【教師活動(dòng)】
總結(jié)板書:㈠(一組鄰邊相等)的矩形是正方形,(一個(gè)角是直角)的菱形是正方形。
設(shè)置問題③正方形有那些性質(zhì)?
【學(xué)生活動(dòng)】
小組討論,舉手搶答。
【教師活動(dòng)】
表揚(yáng)學(xué)生發(fā)言,板書學(xué)生發(fā)現(xiàn),㈡正方形每一條對(duì)角線平分一組對(duì)角
活動(dòng)二:拿出活動(dòng)一得到的正方形折一折,正方形是軸對(duì)稱圖形嗎?有幾條對(duì)稱軸?
學(xué)生活動(dòng)
折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對(duì)稱圖形。
教師活動(dòng)
演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號(hào)內(nèi)容,出示一下問題:你還可以怎樣填空?
()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。
學(xué)生活動(dòng)
小組充分交流,表達(dá)不同的意見。
教師活動(dòng)
評(píng)析活動(dòng),總結(jié)發(fā)現(xiàn):
一組鄰邊相等的矩形是正方形,對(duì)角線互相平分的矩形是正方形;
有一個(gè)角是直角的菱形是正方形,對(duì)角線相等的菱形是正方形,;
有一組鄰邊相等且有一個(gè)角是直角的平行四邊形是正方形,對(duì)角線相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對(duì)角線相等且互相垂直平分的四邊形是正方形。
以上是正方形的判定方法。
正方形是一個(gè)多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?
學(xué)生交流,感受正方形
三,應(yīng)用體驗(yàn),推理證明。
出示例一:正方形ABCD的兩條對(duì)角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數(shù)。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個(gè)角是直角)
BC=AB=4cm(正方形的四條邊相等)
∴=45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC===4cm
∵AO=AC(正方形的對(duì)角線互相平分)
∴AO=×4=2cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學(xué)生活動(dòng)
獨(dú)立思考,寫出推理過程,再進(jìn)行小組討論,并且各小組指派代表寫在黑板上,共同交流。
教師活動(dòng)
總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評(píng)析解題步驟,表揚(yáng)突出學(xué)生。
出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學(xué)生活動(dòng)
小組交流,分析題意,整理思路,指名口答。
教師活動(dòng)
說明思路,從已知出發(fā)或者從已有的判定加以選擇。
四,歸納新知,梳理知識(shí)。
這一節(jié)課你有什么收獲?
學(xué)生舉手談?wù)撟约旱氖斋@。
請(qǐng)把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關(guān)系。
發(fā)表評(píng)論
教學(xué)目標(biāo):
情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂趣。
能力目標(biāo):能利用等腰梯形的性質(zhì)解簡單的幾何計(jì)算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。
認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰梯形性質(zhì)的探索;
難點(diǎn):梯形中輔助線的添加。
教學(xué)課件:PowerPoint演示文稿
教學(xué)方法:啟發(fā)法、
學(xué)習(xí)方法:討論法、合作法、練習(xí)法
教學(xué)過程:
(一)導(dǎo)入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習(xí):下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對(duì)邊平行另以組對(duì)邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對(duì)角線。(投影)
6、特殊梯形的分類:(投影)
。ǘ┑妊菪涡再|(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個(gè)內(nèi)角相等。
【操練】
(1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對(duì)角線,圖中有哪幾對(duì)全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對(duì)角線相等。
【探究性質(zhì)三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對(duì)稱圖形?為什么?對(duì)稱軸呢?(學(xué)生操作、作答)
問題二:等腰梯是否軸對(duì)稱圖形?為什么?對(duì)稱軸是什么?(重點(diǎn)討論)
等腰梯形性質(zhì):同以底上的兩個(gè)內(nèi)角相等,對(duì)角線相等
。ㄈ┵|(zhì)疑反思、小結(jié)
讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;
學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對(duì)角線、對(duì)稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
初中數(shù)學(xué)八年級(jí)上冊(cè)教案2
一、背景知識(shí)
《有理數(shù)的大小比較》選自浙江版《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)七年級(jí)(上冊(cè))》第一章《從自然數(shù)到有理數(shù)》的第5節(jié),有理數(shù)大小比較的提出是從學(xué)生生活熟悉的情境入手,借助于氣溫的高低及數(shù)軸,得出有理數(shù)的大小比較方法。課本安排了"做一做"等形式多樣的教學(xué)活動(dòng),讓學(xué)生通過觀察、思考和自己動(dòng)手操作,體驗(yàn)有理數(shù)大小比較法則的探索過程。
二、教學(xué)目標(biāo)
1、使學(xué)生能說出有理數(shù)大小的比較法則
2、能熟練運(yùn)用法則結(jié)合數(shù)軸比較有理數(shù)的大小,特別是應(yīng)用絕對(duì)值概念比較兩個(gè)負(fù)數(shù)的大小,能利用數(shù)軸對(duì)多個(gè)有理數(shù)進(jìn)行有序排列。
3、能正確運(yùn)用符號(hào)"<"">""∵""∴"寫出表示推理過程中簡單的因果關(guān)系。
三、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):運(yùn)用法則借助數(shù)軸比較兩個(gè)有理數(shù)的大小。
難點(diǎn):利用絕對(duì)值概念比較兩個(gè)負(fù)分?jǐn)?shù)的大小。
四、教學(xué)準(zhǔn)備
多媒體課件
五、教學(xué)設(shè)計(jì)
(一)交流對(duì)話,探究新知
1、說一說
(多媒體顯示)某一天我們5個(gè)城市的最低氣溫從剛才的圖片中你獲得了哪些信息?(從常見的氣溫入手,激發(fā)學(xué)生的求知欲望,可能有些學(xué)生會(huì)說從中知道廣州的最低氣溫10℃比上海的最低氣溫0℃高,有些學(xué)生會(huì)說哈爾濱的最低氣溫零下20℃比北京的最低氣溫零下10℃低等;不會(huì)說的,老師適當(dāng)點(diǎn)拔,從而學(xué)生在合作交流中不知不覺地完成了以下填空。
比較這一天下列兩個(gè)城市間最低氣溫的高低(填"高于"或"低于")
廣州_______上海;北京________上海;北京________哈爾濱;武漢________哈爾濱;武漢__________廣州。
2、畫一畫:(1)把上述5個(gè)城市最低氣溫的數(shù)表示在數(shù)軸上,(2)觀察這5個(gè)數(shù)在數(shù)軸上的位置,從中你發(fā)現(xiàn)了什么?
(3)溫度的高低與相應(yīng)的數(shù)在數(shù)軸上的位置有什么?
(通過學(xué)生自己動(dòng)手操作,觀察、思考,發(fā)現(xiàn)原點(diǎn)左邊的數(shù)都是負(fù)數(shù),原點(diǎn)右邊的數(shù)都是正數(shù);同時(shí)也發(fā)現(xiàn)5在0右邊,5比0大;10在5右邊,10比5大,初步感受在數(shù)軸上原點(diǎn)右邊的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。教師趁機(jī)追問,原點(diǎn)左邊的數(shù)也有這樣的規(guī)律嗎?從而激發(fā)學(xué)生探索知識(shí)的欲望,進(jìn)一步驗(yàn)證了原點(diǎn)左邊的數(shù)也有這樣的規(guī)律。從而使學(xué)生親身體驗(yàn)探索的樂趣,在探究中不知不覺獲得了知識(shí)。)由小組討論后,教師歸納得出結(jié)論:
在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。
正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。
(二)應(yīng)用新知,體驗(yàn)成功
1、練一練(師生共同完成例1后,學(xué)生完成隨堂練習(xí)1)
例1:在數(shù)軸上表示數(shù)5,0,-4,-1,并比較它們的大小,將它們按從小到大的順序用"<"號(hào)連接。(師生共同完成)
分析:本題意有幾層含義?應(yīng)分幾步?
要點(diǎn)總結(jié):小組討論歸納,本題解題時(shí)的一般步驟:
、佼嫈(shù)軸;
、诿椟c(diǎn);
、塾行蚺帕;
、懿坏忍(hào)連接。
隨堂練習(xí)
P19 T1
2、做一做
(1)在數(shù)軸上表示下列各對(duì)數(shù),并比較它們的大小
、2和7 ②-6和-1 、-6和-36 、-和-1.5
(2)求出圖中各對(duì)數(shù)的`絕對(duì)值,并比較它們的大小。
(3)由①、②從中你發(fā)現(xiàn)了什么?
(學(xué)生小組討論后,代表站起來發(fā)言,口述自己組的發(fā)現(xiàn),說明自己組發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生觀察、歸納、用數(shù)學(xué)語言表達(dá)數(shù)學(xué)規(guī)律的能力。)
要點(diǎn)總結(jié):兩個(gè)正數(shù)比較大小,絕對(duì)值大的數(shù)大;兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的數(shù)反而小。
在學(xué)生討論的基礎(chǔ)上,由學(xué)生總結(jié)得出有理數(shù)大小的比較法則。
(1)正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。
(2)兩個(gè)正數(shù)比較大小,絕對(duì)值大的數(shù)大。
(3)兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的數(shù)反而小。
3、師生共同完成例2后,學(xué)生完成隨堂練習(xí)2、3、4。
例2比較下列每對(duì)數(shù)的大小,并說明理由:(師生共同完成)
(1)1與-10,(2)-0.001與0,(3)-8與+2;(4)-與-;(5)-(+)與-|-0.8|
分析:第(4)(5)題較難,第(4)題應(yīng)先通分,第(5)題應(yīng)先化簡,再比較。同時(shí)在講解時(shí),要注意格式。
注:絕對(duì)值比較時(shí),分母相同,分子大的數(shù)大;分子相同,則分母大的數(shù)反而小;分子分母都不相同時(shí),則應(yīng)先通分再比較,或把分子化相同再比較。
兩個(gè)負(fù)數(shù)比較大小時(shí)的一般步驟:
、偾蠼^對(duì)值;
、诒容^絕對(duì)值的大小;
③比較負(fù)數(shù)的大小。
思考:還有別的方法嗎?(分組討論,積極思考)
4、想一想:我們有幾種方法來判斷有理數(shù)的大小?你認(rèn)為它們各有什么特點(diǎn)?
由學(xué)生討論后,得出比較有理數(shù)的大小共有兩種方法,一種是法則,另一種是利用數(shù)軸,當(dāng)兩個(gè)數(shù)比較時(shí)一般選用第一種,當(dāng)多個(gè)有理數(shù)比較大小時(shí),一般選用第二種較好。
練一練:P19 T2、3、4
5、考考你:請(qǐng)你回答下列問題:
(1)有沒有的有理數(shù),有沒有最小的有理數(shù),為什么?
(2)有沒有絕對(duì)值最小的有理數(shù)?若有,請(qǐng)把它寫出來?
(3)在于-1.5且小于4.2的整數(shù)有_____個(gè),它們分別是____。
(4)若a>0,b<0,a<|b|,則你能比較a、b、-a、-b這四個(gè)數(shù)的大小嗎?(本題屬提高題,不要求全體學(xué)生掌握)
(新穎的問題會(huì)激發(fā)學(xué)生的好奇心,通過合作交流,自主探究等活動(dòng),培養(yǎng)學(xué)生思維的習(xí)慣和數(shù)學(xué)語言的表達(dá)能力)
6、議一議,談?wù)劚竟?jié)課你有哪些收獲
(由師生共同完成本節(jié)課的小結(jié))本節(jié)課主要學(xué)習(xí)了有理數(shù)大小比較的兩種方法,一種是按照法則,兩兩比較,另一種是利用數(shù)軸,運(yùn)用這種方法時(shí),首先必須把要比較的數(shù)在數(shù)軸上表示出來,然后按照它們?cè)跀?shù)軸上的位置,從左到右(或從右到左)用"<"(或">")連接,這種方法在比較多個(gè)有理數(shù)大小時(shí)非常簡便。
六、布置作業(yè):
P19 A組、B組
基礎(chǔ)好的A、B兩組都做
基礎(chǔ)較差的同學(xué)選做A組。
初中數(shù)學(xué)八年級(jí)上冊(cè)教案3
教學(xué)目標(biāo):
知識(shí)與技能目標(biāo):
1.掌握矩形的概念、性質(zhì)和判別條件.
2.提高對(duì)矩形的性質(zhì)和判別在實(shí)際生活中的應(yīng)用能力.
過程與方法目標(biāo):
1.經(jīng)歷探索矩形的有關(guān)性質(zhì)和判別條件的過程,在直觀操作活動(dòng)和簡單的說理過程中發(fā)展學(xué)生的合情推理能力,主觀探索習(xí)慣,逐步掌握說理的基本方法.
2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉(zhuǎn)化歸思想.
情感與態(tài)度目標(biāo):
1.在操作活動(dòng)過程中,加深對(duì)矩形的的認(rèn)識(shí),并以此激發(fā)學(xué)生的探索精神.2.通過對(duì)矩形的探索學(xué)習(xí),體會(huì)它的內(nèi)在美和應(yīng)用美.
教學(xué)重點(diǎn):矩形的性質(zhì)和常用判別方法的理解和掌握.
教學(xué)難點(diǎn):矩形的性質(zhì)和常用判別方法的`綜合應(yīng)用.
教學(xué)方法:分析啟發(fā)法
教具準(zhǔn)備:像框,平行四邊形框架教具,多媒體課件.
教學(xué)過程設(shè)計(jì):
一.情境導(dǎo)入:
演示平行四邊形活動(dòng)框架,引入課題.
二.講授新課:
1.歸納矩形的定義:
問題:從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時(shí),就成了矩形?(學(xué)生思考、回答.)
結(jié)論:有一個(gè)內(nèi)角是直角的平行四邊形是矩形.
八年級(jí)數(shù)學(xué)上冊(cè)教案2.探究矩形的性質(zhì):
(1).問題:像框除了“有一個(gè)內(nèi)角是直角”外,還具有哪些一般平行四邊形不具備的性質(zhì)?(學(xué)生思考、回答.)
結(jié)論:矩形的四個(gè)角都是直角.
。2).探索矩形對(duì)角線的性質(zhì):
讓學(xué)生進(jìn)行如下操作后,思考以下問題:(幻燈片展示)
在一個(gè)平行四邊形活動(dòng)框架上,用兩根橡皮筋分別套在相對(duì)的兩個(gè)頂點(diǎn)上,拉動(dòng)一對(duì)不相鄰的頂點(diǎn),改變平行四邊形的形狀.
、.隨著∠α的變化,兩條對(duì)角線的長度分別是怎樣變化的?
、.當(dāng)∠α是銳角時(shí),兩條對(duì)角線的長度有什么關(guān)系?當(dāng)∠α是鈍角時(shí)呢?
、.當(dāng)∠α是直角時(shí),平行四邊形變成矩形,此時(shí)兩條對(duì)角線的長度有什么關(guān)系?
(學(xué)生操作,思考、交流、歸納.)
結(jié)論:矩形的兩條對(duì)角線相等.
。3).議一議:(展示問題,引導(dǎo)學(xué)生討論解決.)
、.矩形是軸對(duì)稱圖形嗎?如果是,它有幾條對(duì)稱軸?如果不是,簡述你的理由.
、.直角三角形斜邊上的中線等于斜邊長的一半,你能用矩形的有關(guān)性質(zhì)解釋這結(jié)論嗎?
(4).歸納矩形的性質(zhì):(引導(dǎo)學(xué)生歸納,并體會(huì)矩形的“對(duì)稱美”.)
矩形的對(duì)邊平行且相等;矩形的四個(gè)角都是直角;矩形的對(duì)角線相等且互相平分;矩形是軸對(duì)稱圖形.
例解:(性質(zhì)的運(yùn)用,滲透矩形對(duì)角線的“化歸”功能.)
如圖,在矩形ABCD中,兩條對(duì)角線AC,BD相交于點(diǎn)O,AB=OA=4
厘米.求BD與AD的長.
。ㄒ龑(dǎo)學(xué)生分析、解答.)
探索矩形的判別條件:(由修理桌子引出)
。1).想一想:(學(xué)生討論、交流、共同學(xué)習(xí))
對(duì)角線相等的平行四邊形是怎樣的四邊形?為什么?
結(jié)論:對(duì)角線相等的平行四邊形是矩形.
。ɡ碛煽捎蓭熒餐治,然后用幻燈片展示完整過程.)
。2).歸納矩形的判別方法:(引導(dǎo)學(xué)生歸納)
有一個(gè)內(nèi)角是直角的平行四邊形是矩形.
對(duì)角線相等的平行四邊形是矩形.
三.課堂練習(xí):(出示P98隨堂練習(xí)題,學(xué)生思考、解答.)
四.新課小結(jié):
通過本節(jié)課的學(xué)習(xí),你有什么收獲?
。◣熒餐瑥闹R(shí)與思想方法兩方面小結(jié).)
五.作業(yè)設(shè)計(jì):P99習(xí)題4.6第1、2、3題.
板書設(shè)計(jì):
4.矩形
矩形的定義:
矩形的性質(zhì):
前面知識(shí)的小系統(tǒng)圖示:
三.矩形的判別條件:
例1
課后反思:在平行四邊形及菱形的教學(xué)后。學(xué)生已經(jīng)學(xué)會(huì)自主探索的方法,自己動(dòng)手猜想驗(yàn)證一些矩形的特殊性質(zhì)。一些相關(guān)矩形的計(jì)算也學(xué)會(huì)應(yīng)用轉(zhuǎn)化為直角三角形的方法來解決?偟目磥磉@節(jié)課學(xué)生掌握的還不錯(cuò)。當(dāng)然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。
初中數(shù)學(xué)八年級(jí)上冊(cè)教案4
教學(xué)目標(biāo)
。保J(rèn)識(shí)變量、常量.
。玻畬W(xué)會(huì)用含一個(gè)變量的代數(shù)式表示另一個(gè)變量.
教學(xué)重點(diǎn)
。保J(rèn)識(shí)變量、常量.
。玻檬阶颖硎咀兞块g關(guān)系.
教學(xué)難點(diǎn)
用含有一個(gè)變量的式子表示另一個(gè)變量.
教學(xué)過程
Ⅰ.提出問題,創(chuàng)設(shè)情境
情景問題:一輛汽車以60千米/小時(shí)的速度勻速行駛,行駛里程為s千米.行駛時(shí)間為t小時(shí).
1.請(qǐng)同學(xué)們根據(jù)題意填寫下表:
t/時(shí) 1 2 3 4 5
s/千米
。玻谝陨线@個(gè)過程中,變化的量是________.變變化的量是__________.
。常囉煤瑃的式子表示s.
Ⅱ.導(dǎo)入新課
首先讓學(xué)生思考上面的幾個(gè)問題,可以互相討論一下,然后回答.
從題意中可以知道汽車是勻速行駛,那么它1小時(shí)行駛60千米,2小時(shí)行駛2×60千米,即120千米,3小時(shí)行駛3×60千米,即180千米,4小時(shí)行駛4×60千米,即240千米,5小時(shí)行駛5×60千米,即300千米……因此行駛里程s千米與時(shí)間t小時(shí)之間有關(guān)系:s=60t.其中里程s與時(shí)間t是變化的量,速度60千米/小時(shí)是不變的量.
這種問題反映了勻速行駛的汽車所行駛的里程隨行駛時(shí)間的變化過程.其實(shí)現(xiàn)實(shí)生活中有好多類似的問題,都是反映不同事物的變化過程,其中有些量的值是按照某種規(guī)律變化,其中有些量的是按照某種規(guī)律變化的,如上例中的時(shí)間t、里程s,有些量的數(shù)值是始終不變的',如上例中的速度60千米/小時(shí).
[活動(dòng)一]
。保繌堧娪捌笔蹆r(jià)為10元,如果早場(chǎng)售出票150張,日?qǐng)鍪鄢?05張,晚場(chǎng)售出310張.三場(chǎng)電影的票房收入各多少元.設(shè)一場(chǎng)電影售票x張,票房收入y元.怎樣用含x的式子表示y?
。玻谝桓鶑椈傻南露藨覓熘匚,改變并記錄重物的質(zhì)量,觀察并記錄彈簧長度的變化,探索它們的變化規(guī)律.如果彈簧原長10cm,每1kg重物使彈簧伸長0.5cm,怎樣用含有重物質(zhì)量m的式子表示受力后的彈簧長度?
引導(dǎo)學(xué)生通過合理、正確的思維方法探索出變化規(guī)律.
結(jié)論:
。保鐖(chǎng)電影票房收入:150×10=1500(元)
日?qǐng)鲭娪捌狈渴杖耄?05×10=20xx(元)
晚場(chǎng)電影票房收入:310×10=3100(元)
關(guān)系式:y=10x
。玻畳1kg重物時(shí)彈簧長度: 1×0.5+10=10.5(cm)
掛2kg重物時(shí)彈簧長度:2×0.5+10=11(cm)
掛3kg重物時(shí)彈簧長度:3×0.5+10=11.5(cm)
關(guān)系式:L=0.5m+10
通過上述活動(dòng),我們清楚地認(rèn)識(shí)到,要想尋求事物變化過程的規(guī)律,首先需確定在這個(gè)過程中哪些量是變化的,而哪些量又是不變的.在一個(gè)變化過程中,我們稱數(shù)值發(fā)生變化的量為變量(variable),那么數(shù)值始終不變的量稱之為常量(constant).如上述兩個(gè)過程中,售出票數(shù)x、票房收入y;重物質(zhì)量m,彈簧長度L都是變量.而票價(jià)10元,彈簧原長10cm……都是常量.
[活動(dòng)二]
。保嬕粋(gè)面積為10cm2的圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢?怎樣用含有圓面積S的式子表示圓半徑r?
。玻10m長的繩子圍成矩形,試改變矩形長度.觀察矩形的面積怎樣變化.記錄不同的矩形的長度值,計(jì)算相應(yīng)的矩形面積的值,探索它們的變化規(guī)律:設(shè)矩形的長度為xcm,面積為Scm2.怎樣用含有x的式子表示S?
結(jié)論:
1.要求已知面積的圓的半徑,可利用圓的面積公式經(jīng)過變形求出S= r2r=
面積為10cm2的圓半徑r= ≈1.78(cm)
面積為20cm2的圓半徑r= ≈2.52(cm)
關(guān)系式:r=
。玻蚓匦蝺山M對(duì)邊相等,所以它一條長與一條寬的和應(yīng)是周長10cm的一半,即5cm.
若長為1cm,則寬為5-1=4(cm)
據(jù)矩形面積公式:S=1×4=4(cm2)
若長為2cm,則寬為5-2=3(cm)
面積S=2×(5-2)=6(cm2)
… …
若長為xcm,則寬為5-x(cm)
面積S=x?(5-x)=5x-x2(cm2)
從以上兩個(gè)題中可以看出,在探索變量間變化規(guī)律時(shí),可利用以前學(xué)過的一些有關(guān)知識(shí)公式進(jìn)行分析尋找,以便盡快找出之間關(guān)系,確定關(guān)系式.
Ⅲ.隨堂練習(xí)
。保徺I一些鉛筆,單價(jià)0.2元/支,總價(jià)y元隨鉛筆支數(shù)x變化,指出其中的常量與變量,并寫出關(guān)系式.
。玻粋(gè)三角形的底邊長5cm,高h(yuǎn)可以任意伸縮.寫出面積S隨h變化關(guān)系式,并指出其中常量與變量.
解:1.買1支鉛筆價(jià)值1×0.2=0.2(元)
買2支鉛筆價(jià)值2×0.2=0.4(元)
……
買x支鉛筆價(jià)值x×0.2=0.2x(元)
所以y=0.2x
其中單價(jià)0.2元/支是常量,總價(jià)y元與支數(shù)x是變量.
。玻鶕(jù)三角形面積公式可知:
當(dāng)高h(yuǎn)為1cm時(shí),面積S= ×5×1=2.5cm2
當(dāng)高h(yuǎn)為2cm時(shí),面積S= ×5×2=5cm2
… …
當(dāng)高為hcm,面積S= ×5×h=2.5hcm2
初中數(shù)學(xué)八年級(jí)上冊(cè)教案5
教學(xué)目標(biāo)
一、教學(xué)知識(shí)點(diǎn):
1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).
二、能力訓(xùn)練要求:
1.通過具體實(shí)例認(rèn)識(shí)旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.
2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個(gè)圖形對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).
三、情感與價(jià)值觀要求
1.經(jīng)歷對(duì)生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進(jìn)行觀察、分析、欣賞以及動(dòng)手操作、畫圖等過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí).
2.通過學(xué)習(xí)使學(xué)生能用數(shù)學(xué)的眼光看待生活中的有關(guān)問題,進(jìn)一步發(fā)展學(xué)生的數(shù)學(xué)觀.
教學(xué)重點(diǎn):旋轉(zhuǎn)的基本性質(zhì).
教學(xué)難點(diǎn):探索旋轉(zhuǎn)的基本性質(zhì).
教學(xué)方法:
1、遵循學(xué)生是學(xué)習(xí)的主人的原則,在為學(xué)生創(chuàng)造大量實(shí)例的基礎(chǔ)上,引導(dǎo)學(xué)生自主思考、交流、討論、歸納、學(xué)習(xí)。
2、采用多媒體課件輔助教學(xué)。
教學(xué)過程:
一.巧設(shè)情景問題,引入課題
日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動(dòng)、汽車方向盤的轉(zhuǎn)動(dòng)、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動(dòng)現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動(dòng)過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉(zhuǎn)動(dòng)呢?
1.在這些轉(zhuǎn)動(dòng)的現(xiàn)象中,它們都是繞著一個(gè)點(diǎn)轉(zhuǎn)動(dòng)的.
2.每個(gè)物體的轉(zhuǎn)動(dòng)都是向同一個(gè)方向轉(zhuǎn)動(dòng).
3.鐘表的指針、鐘擺在轉(zhuǎn)動(dòng)過程中,它的形狀、大小沒有變化,只是它的位置有所改變.
4.汽車的方向盤在轉(zhuǎn)動(dòng)過程中,同樣它的形狀、大小沒有改變,方向盤上的每點(diǎn)的位置所變化.同學(xué)們觀察得很仔細(xì),我們把這樣的轉(zhuǎn)動(dòng)叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來探討生活中的旋轉(zhuǎn).
二.講授新課
在數(shù)學(xué)中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個(gè)圖形繞著一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn)(circumrotate).這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角.注意:“將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度”意味著圖形上的每個(gè)點(diǎn)同時(shí)都按相同的方式轉(zhuǎn)動(dòng)相同的角度.在物體繞著一個(gè)定點(diǎn)轉(zhuǎn)動(dòng)時(shí),它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.
議一議:(課本67頁)答:(1)旋轉(zhuǎn)中心是O點(diǎn),旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.
(2)四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置.這時(shí)點(diǎn)A旋轉(zhuǎn)到點(diǎn)D的位置,點(diǎn)B旋轉(zhuǎn)到點(diǎn)E的位置.
(3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長短、形狀沒有變化,所以O(shè)A與OD是相等的.同樣,線段OB與OE是相等的.
(4)因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過程中,圖形上的每個(gè)點(diǎn)同時(shí)都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的`.
(4)也可以這樣理解:因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因?yàn)椤螧OD是公共角,所以,∠AOD與∠BOE是相等的.
看上圖,四邊形DOEF是由四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)得到的,經(jīng)過旋轉(zhuǎn),點(diǎn)A移動(dòng)到點(diǎn)D的位置,點(diǎn)B移動(dòng)到點(diǎn)E的位置,點(diǎn)C移動(dòng)到點(diǎn)F的位置,則點(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E、點(diǎn)C與點(diǎn)F就是對(duì)應(yīng)點(diǎn).從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?
答:因?yàn)镺是旋轉(zhuǎn)中心,點(diǎn)A與點(diǎn)D是對(duì)應(yīng)點(diǎn),點(diǎn)B與點(diǎn)E是對(duì)應(yīng)點(diǎn),且OA=OD,OB=OE,所以可以知道:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的長度是相等的.
因?yàn)辄c(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E是對(duì)應(yīng)點(diǎn),且∠AOD=∠BOE,所以由此可以知道:對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角是互相相等的.
由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過旋轉(zhuǎn),圖形上的每一點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度.任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.
[例1](課本68頁例1)
。蹘熒参觯萁(jīng)演示(鐘表實(shí)物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時(shí)的度數(shù)是360°,一周需要60分,因此每分鐘分針?biāo)D(zhuǎn)過的度數(shù)是6°,這樣20分時(shí),分針逆轉(zhuǎn)的角度即可求出.
解:(見課本68頁)
書上68頁做一做
三.課堂練習(xí)
課本P69隨堂練習(xí).
1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.
四.課時(shí)小結(jié)
五.課后作業(yè):課本P69習(xí)題3.4 1、2、3.
六.活動(dòng)與探究
1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過程:讓學(xué)生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉(zhuǎn)規(guī)律.
結(jié)果:旋轉(zhuǎn)現(xiàn)象為:
整個(gè)圖形可以看做是圖形的八分之一(一組大小不等的三個(gè)“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.
整個(gè)圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.
整個(gè)圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
2.圖中是否存在這樣的兩個(gè)三角形,其中一個(gè)是另一個(gè)通過旋轉(zhuǎn)得到的?
過程:同樣讓學(xué)生在畫圖過程中體會(huì)圖形中每個(gè)三角形之間的關(guān)系;或讓學(xué)生仔細(xì)觀察圖形,分析圖形,找出關(guān)系.
結(jié)果:圖中存在這樣的三角形,其中一個(gè)是另一個(gè)通過旋轉(zhuǎn)得到的.
整個(gè)圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.
整個(gè)圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.
板書設(shè)計(jì):略
教學(xué)反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學(xué)直觀生動(dòng)形象。學(xué)生一般都能在教師的指導(dǎo)下掌握。也在培養(yǎng)學(xué)生的空間想象能力。
【初中數(shù)學(xué)八年級(jí)上冊(cè)教案】相關(guān)文章:
初中數(shù)學(xué)八年級(jí)上冊(cè)教案精選5篇06-05
初中數(shù)學(xué)八年級(jí)上冊(cè)教案(5篇)02-08
初中數(shù)學(xué)八年級(jí)上冊(cè)教案5篇02-07
數(shù)學(xué)八年級(jí)上冊(cè)教案03-02
八年級(jí)上冊(cè)數(shù)學(xué)優(yōu)秀教案01-23
數(shù)學(xué)八年級(jí)上冊(cè)教案15篇03-02
數(shù)學(xué)八年級(jí)上冊(cè)教案(15篇)03-02