- 相關(guān)推薦
初中數(shù)學(xué)幾何教案
作為一位杰出的老師,通常需要用到教案來(lái)輔助教學(xué),借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么問(wèn)題來(lái)了,教案應(yīng)該怎么寫?下面是小編精心整理的初中數(shù)學(xué)幾何教案,僅供參考,希望能夠幫助到大家。
初中數(shù)學(xué)幾何教案1
一、徹底搞清定義、定理、公理的真正含義
要想讓學(xué)生寫出思路清晰、層次分明的幾何證明題的書寫過(guò)程。首先最關(guān)鍵的一步就是要讓學(xué)生徹底分清定義、定理、公理的題設(shè)和結(jié)論,真正理解其真實(shí)含義。只有這樣,學(xué)生才能在以后的證明過(guò)程中,正確地利用它來(lái)證明相關(guān)結(jié)論。反之,如果你對(duì)定理的內(nèi)容都沒(méi)有真正理解,而是含糊其詞,是是而非,或者本身就不知道有這樣一個(gè)定理,那么你在以后的證明過(guò)程中,就不能正確地應(yīng)用這個(gè)定理或者就不知道應(yīng)用這個(gè)定理,整個(gè)證明過(guò)程就會(huì)陷入僵局。同時(shí),我們還要讓學(xué)生把握清楚定理的內(nèi)涵,不能對(duì)定理的理解有模棱兩可、含糊其詞之感。例如,在學(xué)習(xí)等腰三角形的“三線合一”這一定理時(shí),有些同學(xué)就理解不清,沒(méi)有真正掌握其含義,甚至自己都感到有些困惑,致使在應(yīng)用時(shí)出現(xiàn)一些小錯(cuò)誤。我們都知道這個(gè)定理的正確用法是,在知道一個(gè)三角形是等腰三角形的大前提下,
其中“頂角的平分線”、“底邊上的高”、“底邊上的中線”三者知道一個(gè),就可以得到另外兩個(gè)結(jié)論。而有些沒(méi)有真正理解其含義的同學(xué)就這樣寫道:(如圖)
在△ABC中
∵AB=AC,AD⊥BC,BD=CD∴AD平分∠BAC
顯然,這是不恰當(dāng)?shù)摹T蚓驮谟跊](méi)有真正理解等腰三角形“三線合一”這一定理的內(nèi)涵,應(yīng)該去掉“的任一個(gè)。
二、加強(qiáng)三種幾何語(yǔ)言的教學(xué),特別是符號(hào)語(yǔ)言
幾何語(yǔ)言包括三種不同形式的語(yǔ)言,即文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言。對(duì)定理、公理的教學(xué),我們老師不僅要讓學(xué)生掌握定理對(duì)應(yīng)的三種語(yǔ)言,還要培養(yǎng)學(xué)生對(duì)三種語(yǔ)言的轉(zhuǎn)換能力。
由于三種語(yǔ)言
AD⊥BC”和“BD=CD”中的不同特點(diǎn),在教學(xué)中各自發(fā)揮的作用也不相同。在三種語(yǔ)言中,符號(hào)語(yǔ)言是幾何初學(xué)者最難掌握的一種,也是邏輯推理必備的能力基礎(chǔ),因?yàn)榭荚囍械淖C明題要用符號(hào)語(yǔ)言來(lái)體現(xiàn)。
我們老師在教學(xué)中如何讓學(xué)生掌握好符號(hào)語(yǔ)言呢?在教學(xué)某一定理時(shí),首先要讓學(xué)生在理解的基礎(chǔ)上,結(jié)合圖形能用自己的語(yǔ)言進(jìn)行描述再引導(dǎo)學(xué)生如何用符號(hào)語(yǔ)言進(jìn)行“翻譯”。的點(diǎn)到角的兩邊的距離相等”這一定理時(shí)。
(即文字語(yǔ)言),然后
例如在教學(xué)“角平分線上首先,我們老師要引導(dǎo)學(xué)生用什么樣的方法證明這一定理,然后引導(dǎo)學(xué)生用自己的話表述這一性質(zhì),最后訓(xùn)練學(xué)生如何用符號(hào)來(lái)描述這一定理。這一定理的題設(shè)中,關(guān)鍵的兩點(diǎn)即“角平分線”和“角平分線上的點(diǎn)到角的兩邊的距離”,如何用符號(hào)表示呢呢?(如圖),
?結(jié)論中的“相等”,又如何用符號(hào)表示
題設(shè)中的“兩點(diǎn)”可以這樣用符號(hào)表示:∠1=∠2,CD⊥AO,CE⊥BO,結(jié)論中的“相等”可表示為:CD=CE
如果我們以后用到這一性質(zhì)時(shí),就可以這樣寫了:∵∠1=∠2,CD⊥AO,CE⊥BO∴CD=CE
三、理清思路,做到層次分明
我們老師在批改學(xué)生的證明題時(shí),常常會(huì)發(fā)現(xiàn)這樣的現(xiàn)象:為了證明某一結(jié)論,假設(shè)需要通過(guò)兩步“同等身份”的推理,
才能得出最后的結(jié)論,個(gè)別學(xué)生在證明時(shí),往往兩步的'推理互相穿插,第一步證明的推理在第二步中有出現(xiàn),第二步的推理在第一步中也有體現(xiàn)。也就是說(shuō),思路不清,條理不清晰。出現(xiàn)這種現(xiàn)象的原因還是在書寫過(guò)程之前,思路不清、層次不分明。針對(duì)這種現(xiàn)象,我們老師要幫助學(xué)生細(xì)細(xì)分析清楚后,再讓學(xué)生書寫過(guò)程。例如有這樣一道證明題:(如圖)
已知:如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,BE‖AC,CE‖BD。
求證:四邊形OBEC是菱形。
針對(duì)這一題目,引導(dǎo)學(xué)生通過(guò)分析后,發(fā)現(xiàn)這個(gè)題目只要證明“兩大塊”就行了,即證“OB=OC”和“四邊形
OBEC為平行四邊形”,然后再引導(dǎo)學(xué)生這“兩大塊”又分別怎樣用符號(hào)語(yǔ)言表述就可以了。當(dāng)然,這“兩大塊”的證明不分先后。通過(guò)這樣的分析后,學(xué)生在書寫時(shí)就不會(huì)出現(xiàn)證明“OB=OC”時(shí)出現(xiàn)“BE‖AC”這樣的“不速之客”了。
四、掌握幾何證明題常用的分析方法
幾何證明題常用的分析方法有綜合法和分析法,
另外還有一種就是分析法和綜合法的結(jié)合使用。那么我們?cè)谧C明某一結(jié)論時(shí),到底用上述三種方法的哪一種呢?這要根據(jù)具體的問(wèn)題,具體的情況進(jìn)行決定。有時(shí)一個(gè)待證的結(jié)論分析法也可以,綜合法也可以,都比較容易找到解決問(wèn)題的思路,但有時(shí)一個(gè)待證的結(jié)論,這兩種方法都不奏效,都不容易找到解決問(wèn)題的方法,這時(shí)我們不妨把這兩種方法結(jié)合起來(lái)使用,或許能找到“突破點(diǎn)”。因此,我們老師要讓學(xué)生在解決證明題的過(guò)程中,自己要注意總結(jié)和反思,靈活掌握上述的三種方法。只有這樣才能在尋求解決問(wèn)題方案的過(guò)程中游刃有余。
五、多鼓勵(lì)學(xué)生
剛剛學(xué)習(xí)幾何證明題書寫的學(xué)生,在書寫的過(guò)程中肯定要或多或少地出現(xiàn)這樣或那樣的錯(cuò)誤。我們老師在對(duì)待這一問(wèn)題時(shí),不要急躁,要耐心地對(duì)學(xué)生進(jìn)行講解和引導(dǎo),多鼓勵(lì)、多表?yè)P(yáng)他們。不理想的推理步驟要不斷改進(jìn),同時(shí)引導(dǎo)學(xué)生自己多領(lǐng)悟多反思一下。這樣,學(xué)生就不會(huì)失去這方面的信心,他們會(huì)做得越來(lái)越好。
總之,對(duì)學(xué)生幾何證明題書寫的教學(xué),我們老師要有足夠的耐心,采取不同的教學(xué)思路和方法,引導(dǎo)和鼓勵(lì)學(xué)生循序漸進(jìn)地掌握正確書寫的方法和技巧。只有這樣,學(xué)生才能書寫出思路清晰、層次分明的幾何證明題書寫過(guò)
初中數(shù)學(xué)幾何教案2
【學(xué)生分析】
大部分學(xué)生思維活躍,肯鉆、肯想、敢說(shuō)、敢問(wèn),對(duì)立體圖形認(rèn)識(shí)有一定知識(shí)積累,有探究、合作等學(xué)習(xí)方法積累,促進(jìn)學(xué)生知識(shí)深化和延伸尤為重要。
【設(shè)計(jì)思路】
將電視娛樂(lè)節(jié)目的形式植入數(shù)學(xué)課堂,體現(xiàn)用活教材激活課堂的理念思想,方法教學(xué)成為主導(dǎo),指導(dǎo)學(xué)習(xí)方向,復(fù)習(xí)活動(dòng)貫穿課前、課中,采用分組競(jìng)賽、分組合作的形式,使學(xué)生在積極主動(dòng)的狀態(tài)下理解本課重點(diǎn),疏通并構(gòu)建知識(shí)網(wǎng)絡(luò),掌握復(fù)習(xí)方法。
【課前準(zhǔn)備】
每組據(jù)分工專門研究一個(gè)立體圖形的特征,整理出3個(gè)有關(guān)的涵蓋面寬,較富挑戰(zhàn)性的,主要針對(duì)基礎(chǔ)知識(shí)的問(wèn)題。同時(shí),據(jù)猜測(cè)準(zhǔn)備好別組涉及問(wèn)題的答案。
【教學(xué)目標(biāo)】
1、知識(shí)目標(biāo):使學(xué)生進(jìn)一步識(shí)記各圖形特征,掌握不同圖
形之間的異同,學(xué)會(huì)觀察體會(huì)幾何圖形間的聯(lián)系和區(qū)別。
2、能力目標(biāo):通過(guò)小組競(jìng)賽合作整理知識(shí)框架,提高學(xué)習(xí)的系統(tǒng)性,培養(yǎng)學(xué)生回憶、質(zhì)疑、梳理、歸納、總結(jié)等自主復(fù)習(xí)整理的意識(shí)和方法以及能力,同時(shí)也加強(qiáng)合作學(xué)習(xí)能力。
3、情感目標(biāo):利用幾何圖形的美,增進(jìn)學(xué)生對(duì)數(shù)學(xué)的興趣,復(fù)習(xí)方法自主構(gòu)建的嘗試,激發(fā)學(xué)生自信心,滲透事物普遍聯(lián)系的辯證唯物主義觀點(diǎn)。
【重難點(diǎn)】
教學(xué)重點(diǎn)
溝通各圖形內(nèi)在聯(lián)系,培養(yǎng)學(xué)生主動(dòng)整理知識(shí)的意識(shí),使學(xué)生掌握一定的復(fù)習(xí)整理方法。
教學(xué)難點(diǎn)
描述幾何圖形特征的語(yǔ)言的準(zhǔn)確性訓(xùn)練,以及知識(shí)延伸,進(jìn)一步發(fā)展學(xué)生空間觀念。
【教學(xué)過(guò)程】
一、構(gòu)建幾何圖形的簡(jiǎn)單知識(shí)網(wǎng)絡(luò),感知平面圖形和立體圖形的密切聯(lián)系。
1、完善幾何圖形知識(shí)圖:
師:除了平面圖形,你覺得還有哪類圖形?(立體圖形)
2、感知平面圖形和立體圖形的密切聯(lián)系。
師:這是一個(gè)平面圖形還是立體圖形?
師:從它的表面上,你觀察到哪些平面圖形?
3、強(qiáng)調(diào)平面圖形和立體圖形的區(qū)別。
(1)試一試:把下列幾何圖形分類?
(2)你感覺二者的區(qū)別主要是什么?師舉例說(shuō)明。
強(qiáng)調(diào):各部分是否在同一平面
二、展開復(fù)習(xí)活動(dòng),自主系統(tǒng)整理,感知立體圖形和立體圖形的聯(lián)系。
(1)梳理五種立體圖形的基本構(gòu)成,加強(qiáng)和生活聯(lián)系。
1、出示五種立體圖形。
(1)憶一憶:你認(rèn)識(shí)這些幾何體嗎?說(shuō)名稱
(2)暢所欲言:舉出日常生活中和它們類似的物體。
(小組比賽,看誰(shuí)說(shuō)得多,讓學(xué)生感覺正是這些基本圖形構(gòu)成我們生活的空間)
(3)議一議,認(rèn)真觀察,識(shí)記圖形。
出示情景圖:圖中你熟悉的物體類似于哪些圖形?
2、說(shuō)出各立體圖形各部分名稱,各字母表示什么?
3、立體圖形分類
師:分兩類,怎么分?為什么?
(二)主動(dòng)回憶,梳理知識(shí)。
1、談話引入:關(guān)于我們要復(fù)習(xí)的知識(shí)你想留下深刻清晰的印象嗎?老師給大家介紹一個(gè)復(fù)習(xí)的好方法。
2、出示復(fù)習(xí)方法:
關(guān)于要復(fù)習(xí)的知識(shí)
(1)我已知道什么?
(2)你想怎樣去整理它?
(3)怎樣得到更多、更好的整理方法?
(4)動(dòng)手檢測(cè)自己
(5)你還有什么不明白的?
3、據(jù)復(fù)習(xí)方法依次展開活動(dòng)
(1)關(guān)于立體圖形,我已知道了什么?
以電視節(jié)目“開心辭典”和小組競(jìng)賽的.形式進(jìn)行。
每組提出關(guān)于本組研究?jī)?nèi)容的三個(gè)問(wèn)題,其他組回答,教師宣布好比賽規(guī)則,充當(dāng)裁判和記分員。
(2)你想怎樣去整理?
、賻熞龑(dǎo)給出學(xué)生整理的方法。
a:正方體、長(zhǎng)方體在一塊兒整理......
b:找相同點(diǎn)、不同點(diǎn)
c:據(jù)構(gòu)成名稱分層分類對(duì)比整理。
②小組合作:嘗試整理正、長(zhǎng)方體的特點(diǎn)
③實(shí)物展臺(tái)展示學(xué)生成果
、軒熣n件演示整理結(jié)果:正、長(zhǎng)方體的特征
、莅瓷鲜鰪(fù)習(xí)整理方法自主整理圓柱、圓錐、球的特征,先獨(dú)立整理,再小組交流,展臺(tái)展示學(xué)生不同方法的成果,教師課件演示。
三、知識(shí)檢測(cè),形成反饋
1、一組判斷題
(1)長(zhǎng)方體和正方體都有六個(gè)面,而且六個(gè)面都相等。
(2)長(zhǎng)方體的三條棱就是它的長(zhǎng),寬,高。
(3)上下兩個(gè)底面是圓形且相等的形體一定是圓柱。
(4)圓柱的側(cè)面展開后是一個(gè)正方形,那么它的底面周長(zhǎng)和高一定相等。
(5)圓錐的頂點(diǎn)到底面只有一條垂線段。
(6)從圓柱體的上底面到下底面的任何一條連線都是這個(gè)圓柱的高。
(7)正方體的棱長(zhǎng)總和是48厘米,它的每條棱長(zhǎng)是8厘米。
2、一組填空題
(1)把一個(gè)邊長(zhǎng)31.4厘米的正方形鐵皮卷成一個(gè)圓筒,這個(gè)圓筒的底面周長(zhǎng)是( )厘米,高是( )厘米。
(2)把一個(gè)長(zhǎng)94.2米,寬31.4米的長(zhǎng)方形鐵皮卷成一個(gè)圓筒,這個(gè)圓筒的底面周長(zhǎng)是( )米,高是( )米。
3、搶答游戲:師說(shuō)出一些特征,學(xué)生隨時(shí)猜幾何圖形的名稱
四、鞏固延伸,再次加強(qiáng)平面圖形和立體圖形的聯(lián)系。
1、點(diǎn)、線、面、體的形成聯(lián)系。
師:觀察三幅運(yùn)動(dòng)的圖片,可看成什么幾何圖形在運(yùn)動(dòng)?
師:他們的運(yùn)動(dòng)又形成了什么幾何圖形?
2、這些立體圖形是由哪個(gè)平面圖形旋轉(zhuǎn)而成?
五、總結(jié):我們周圍充滿著數(shù)學(xué),智慧的人塑造了各種幾何美,數(shù)學(xué)幾何美又經(jīng)常裝點(diǎn)我們的生活。
師:你有哪些收獲?(知識(shí)方面、方法方面)
六、溫馨提醒:作業(yè)
感受幾何構(gòu)圖之美,學(xué)會(huì)運(yùn)用復(fù)習(xí)方法。
1、①先欣賞平面圖形組成的圖案
、谧鳂I(yè)一:用平面圖形設(shè)計(jì)一幅美麗的圖案,配解說(shuō)詞。
2、①先欣賞各國(guó)建筑物
、谧鳂I(yè)二:用立體圖形設(shè)計(jì)一個(gè)美麗的建筑物,配上解說(shuō)詞。(給小動(dòng)物設(shè)計(jì)家也行,滲透關(guān)愛思想教育)
3、小貓小狗冬天為什么蜷著身子睡覺?......
作業(yè)三:自己用這堂課的復(fù)習(xí)方法整理有關(guān)立體圖形的表面積、體積的知識(shí)。
初中數(shù)學(xué)幾何教案3
教學(xué)目標(biāo):
1、使學(xué)生理解切割線定理及其推論;
2、使學(xué)生初步學(xué)會(huì)運(yùn)用切割線定理及其推論。
3、通過(guò)對(duì)切割線定理及推論的證明,培養(yǎng)學(xué)生從幾何圖形歸納出幾何性質(zhì)的能力;
4、通過(guò)對(duì)切割線定理及其推論的初步運(yùn)用,培養(yǎng)學(xué)生的分析問(wèn)題能力。在上節(jié)我們?cè)?jīng)學(xué)到相交弦定理及其推論,它反映了圓中兩弦的數(shù)量關(guān)系;我們可以用同樣的方法來(lái)研究圓的一條切線和一條割線的數(shù)量關(guān)系。
教學(xué)重點(diǎn):
使學(xué)生理解切割線定理及其推論,它是以后學(xué)習(xí)中經(jīng)常用到的重要定理。
教學(xué)難點(diǎn):
學(xué)生不能準(zhǔn)確敘述切割線定理及其推論,針對(duì)具體圖形學(xué)生很容易得到數(shù)量關(guān)系,但把它用語(yǔ)言表達(dá),學(xué)生感到困難。
教學(xué)過(guò)程:
一、新課引入:
我們已經(jīng)學(xué)過(guò)相交弦定理及其推論,現(xiàn)在我們用同樣的數(shù)學(xué)思想方法來(lái)研究圓的另外的比例線段。
二、新課講解:
現(xiàn)在請(qǐng)同學(xué)們?cè)诰毩?xí)本上畫⊙O,在⊙O外一點(diǎn)P引⊙O的切線PT,切點(diǎn)為T,割線PBA,以點(diǎn)P、B、A、T為頂點(diǎn)作三角形,可以作幾個(gè)三角形呢?它們中是否存在著相似三角形?如果存在,你得到了怎樣的比例線段?可轉(zhuǎn)化成怎樣的積式?現(xiàn)在請(qǐng)同學(xué)們打開練習(xí)本,按要求作⊙O的切線PT和割線PBA,后研究討論一下。
學(xué)生動(dòng)手畫圖,完成證明,教師巡視,當(dāng)所有學(xué)生都得到數(shù)量關(guān)系式時(shí),教師打開計(jì)算機(jī)或幻燈機(jī)用動(dòng)畫演示。
最終教師指導(dǎo)學(xué)生把數(shù)量關(guān)系轉(zhuǎn)成語(yǔ)言敘述,完成切割線定理及其推論。
1、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。
關(guān)系式:PT=PA·PB
2、切割線定理推論:從圓外一點(diǎn)引圓的兩條割線。這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等。
數(shù)量關(guān)系式:PA·PB=PC·PB。
切割線定理及其推論也是圓中的比例線段,在今后的學(xué)習(xí)中有著重要的意義,務(wù)必使學(xué)生清楚,真正弄懂切割線定理的`數(shù)量關(guān)系后,再把握定理敘述中的“從”、“引”、“切線長(zhǎng)”、“兩條線段長(zhǎng)”等關(guān)鍵字樣,定理敘述并不困難。
練習(xí)一,P128中
1、選擇題:如圖7-86,⊙O的兩條弦AB、CD相交于點(diǎn)E,AC和DB的延長(zhǎng)線交于點(diǎn)P,下列結(jié)論成立的是[]
A、PC·CA=PB·BD
B、CE·AE=BE·ED
C、CE·CD=BE·BA
D、PB·PD=PC·PA
答案:(D),直接運(yùn)用和圓有關(guān)的比例線段進(jìn)行選擇。
練習(xí)二,P128中
2、如圖7-87,已知:Rt△ABC的兩條直角邊AC、BC的長(zhǎng)分別為3cm、4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,求BD的長(zhǎng)。
此題已知Rt△ABC中的邊AC、BC,則AB可知。容易證出BC切⊙O于C,于是產(chǎn)生切割線定理,BD可求。
練習(xí)三,P128中3。如圖7-88,線段AB和⊙O交于C、D,AC=BD,AE、BF分別切⊙O于E、F。
求證:AE=BF。
本題可直接運(yùn)用切割線定理。
例3P127,如圖7-89,已知:⊙O的割線PAB交⊙O于點(diǎn)A和B,PA=6cm,AB=8cm,PO=10.9cm。
求⊙O的半徑。
此題要通過(guò)計(jì)算得到⊙O的半徑,必須使半徑進(jìn)入一個(gè)數(shù)量關(guān)系式,觀察圖形,可知只要延長(zhǎng)PO與圓交于另一點(diǎn),則可產(chǎn)生切割線定理的推論,而其中一條割線恰好經(jīng)過(guò)圓心,在線段中自然可以參與進(jìn)半徑,從而由等式中求出半徑。必須使學(xué)生清楚這種數(shù)學(xué)思想方法,結(jié)合圖形,正確使用和圓有關(guān)的比例線段,則關(guān)系式中必有兩條線段是半徑的代數(shù)式構(gòu)成,只要解關(guān)于半徑的一元二次方程即可。
解:設(shè)⊙O的半徑為r,PO和它的長(zhǎng)延長(zhǎng)線交⊙O于C、D。
(10.9-r)(10.9+r)=6×14r=5.9(取正數(shù)解)
答:⊙O的半徑為5.9。
三、課堂小結(jié):
為培養(yǎng)學(xué)生閱讀教材的習(xí)慣,讓學(xué)生看教材P127—P128?偨Y(jié)出本課主要內(nèi)容:
1、切割線定理及其推論:它是圓的重要比例線段,它反映的是圓的切線和割線所產(chǎn)生的數(shù)量關(guān)系。需要指出的是,只有從圓外一點(diǎn),才可能產(chǎn)生切割線定理或推論。切割線定理是指一條切線和一條割線;推論是指兩條割線,只有使學(xué)生弄清前提,才能正確運(yùn)用定理。
2、通過(guò)對(duì)例3的分析,我們應(yīng)該掌握這類問(wèn)題的思想方法,掌握規(guī)律、運(yùn)用規(guī)律。
四、布置作業(yè):
1、教材P132中10;
2、P132中11。
初中數(shù)學(xué)幾何教案4
函數(shù)圖象的性質(zhì)
活動(dòng)目標(biāo):
1、利用幾何畫板的形象性,通過(guò)量的變化,驗(yàn)證并進(jìn)一步研究
函數(shù)圖象的性質(zhì)。
2、利用幾何畫板的動(dòng)態(tài)性,從變化的幾何圖形中,尋找不變的幾
何規(guī)律。
3、學(xué)會(huì)作簡(jiǎn)單函數(shù)的圖象,并對(duì)圖象作初步了解。
4、通過(guò)本節(jié)課的教學(xué),把幾何畫板作為學(xué)生認(rèn)知的工具,從而激
發(fā)學(xué)生學(xué)習(xí)和探索數(shù)學(xué)的興趣。
活動(dòng)重點(diǎn):圖形的性質(zhì)和規(guī)律的探索
活動(dòng)難點(diǎn):幾何畫板的操作(作函數(shù)的圖象)
活動(dòng)設(shè)施:微機(jī)室(有液晶投影儀和大屏幕或大彩電);軟件:windows操作平臺(tái)、幾何畫板、office20xx等、教師準(zhǔn)備好的五個(gè)畫板文件:hstx1.gsp、hstx2.gsp、hstx3.gsp 、ymdl1.gsp、ymdl2.gsp。
活動(dòng)過(guò)程:
一、展示活動(dòng)主題和目標(biāo):
二、活動(dòng)過(guò)程:
操作練習(xí)一:
按下列步驟進(jìn)行操作,并回答相應(yīng)的問(wèn)題。
1、打開c:sketchhstx1.gsp畫板文件;
2、拖動(dòng)點(diǎn)E和點(diǎn)F沿坐標(biāo)軸運(yùn)動(dòng)(或雙擊按鈕“動(dòng)畫1”),同時(shí)觀看解析式中的k和b的變化。
、佼(dāng)k>0時(shí),圖象經(jīng)過(guò)哪幾個(gè)象限?
、诋(dāng)k<0時(shí),圖象經(jīng)過(guò)哪幾個(gè)象限?
3、雙擊顯示按鈕后,在k>0和k<0兩種情況下,拖動(dòng)點(diǎn)P沿直線移動(dòng),觀察y隨x怎樣變化?(或雙擊動(dòng)畫2按鈕,單擊鼠標(biāo)左鍵動(dòng)畫停止,要繼續(xù)動(dòng)畫,再雙擊動(dòng)畫2按鈕)
4、先在坐標(biāo)系內(nèi)作出直線(或直接打開文件:c:sketchhstx2.gsp)
附:作圖步驟
、冱c(diǎn)擊“文件”菜單中的“新繪圖”命令;
、谟谩爸背吖ぞ摺敝械闹本工具,在繪圖板內(nèi)畫一直線,并用文本工具給直線上的兩個(gè)空心點(diǎn)加上標(biāo)簽A和B;
、塾谩斑x擇工具”選中直線后,點(diǎn)擊“度量”菜單中的“方程”命令,得坐標(biāo)系和直線的方程;然后,再進(jìn)行以下操作,并回答問(wèn)題:
(1)用鼠標(biāo)拖動(dòng)直線進(jìn)行平移,k和b中哪個(gè)變,哪個(gè)不變?
(2)當(dāng)直線通過(guò)原點(diǎn)時(shí),b為多少?此時(shí)函數(shù)又叫什么函數(shù)?
。3)拖動(dòng)點(diǎn)A,使直線繞點(diǎn)B旋轉(zhuǎn),觀察直線的傾斜程度與k之間的關(guān)系?
操作練習(xí)二:
1、打開文件:c:sketchhstx3.gsp
2、保持a不變,分別上下移動(dòng)b、c改變b、c的大小時(shí),拋物線的形狀是否變化?上下移動(dòng)a改變a的大小,注意觀看拋物線的開口方向與什么有關(guān)?張口程度與什么有關(guān)?
3、上下移動(dòng)c改變c的大小,看拋物線怎樣變化?
4、分別改變a、b的大小,看拋物線的對(duì)稱軸是否發(fā)生變化?由3和4可知,拋物線的對(duì)稱軸與什么有關(guān)?與什么無(wú)關(guān)?
5、c保持不變,改變a、b時(shí),拋拋線總是經(jīng)過(guò)哪一點(diǎn)?
6、拋物線與x軸交點(diǎn)的個(gè)數(shù)與b2-4ac的符號(hào)有什么關(guān)系?
7、雙擊顯示按鈕,再雙擊動(dòng)畫按鈕,觀察y隨x怎樣變化?
8、當(dāng)a=0時(shí),函數(shù)的圖象是什么?
操作練習(xí)三:
打開文件:c:sketchymdl1.gsp
圓的兩弦AB、CD相交于圓內(nèi)一點(diǎn)P,我們得到 ,如果把點(diǎn)P拖到圓外,上述結(jié)論是否成立?如果點(diǎn)在圓上呢?
操作練習(xí)四:作函數(shù)y=x2-2的圖象
作圖步驟:
1、擊“文件”菜單中“新繪圖”命令,建立新的繪圖板;
2、點(diǎn)擊“圖表”菜單中的“建立坐標(biāo)軸”;
3、在橫坐標(biāo)軸上任找一點(diǎn),用“文本工具”,加上標(biāo)簽“C”,選中C點(diǎn),單擊“度量”菜單中的“坐標(biāo)”命令,得度量值,C:(-2.80,0.00),再用“選擇工具”選擇它。(度量值變黑)
4、點(diǎn)擊“度量”菜單中的“計(jì)算”命令,出現(xiàn)計(jì)算器;
5、點(diǎn)擊“數(shù)值”下拉式菜單中的“點(diǎn)C”的“x”值,按“確定”按紐,得Xc=-2.80 再用“選擇工具”選擇它。(度量值變黑)
6、點(diǎn)擊“度量”菜單中的“計(jì)算”命令,出現(xiàn)計(jì)算器,再點(diǎn)擊“數(shù)值”下拉式菜單中的“x[c]”,分別按計(jì)算器上的“∧”、“2”、“-”、“2”、 “確定”按紐。得到代數(shù)式的值:xc2-2=14.45.
7、用“選擇工具”,分別選中 Xc=-2.80 xc2-2=14.45. (選取第二個(gè)對(duì)象要按鍵盤上的“shift”鍵的同時(shí)再選);
8、點(diǎn)擊“圖表”菜單中的“繪出(x,y)”,得到點(diǎn)“E”。(如果看不到點(diǎn)E,說(shuō)明它不在當(dāng)前的視窗內(nèi),此時(shí)可調(diào)整C點(diǎn),使該點(diǎn)出現(xiàn)在窗口內(nèi));
9、分別選中點(diǎn)E和點(diǎn)C,點(diǎn)擊“作圖”菜單中的“軌跡”,得二次函數(shù)的圖象。
操作練習(xí)五:
運(yùn)用練習(xí)四的原理,繪制其它函數(shù)的圖象(包括學(xué)過(guò)的和沒(méi)有學(xué)過(guò)的),談?wù)勀銓?duì)所繪函數(shù)圖象的認(rèn)識(shí)。
初中數(shù)學(xué)活動(dòng)課教案一
函數(shù)圖象的'性質(zhì)
活動(dòng)目標(biāo):
1、利用幾何畫板的形象性,通過(guò)量的變化,驗(yàn)證并進(jìn)一步研究
函數(shù)圖象的性質(zhì)。
2、利用幾何畫板的動(dòng)態(tài)性,從變化的幾何圖形中,尋找不變的幾
何規(guī)律。
3、學(xué)會(huì)作簡(jiǎn)單函數(shù)的圖象,并對(duì)圖象作初步了解。
4、通過(guò)本節(jié)課的教學(xué),把幾何畫板作為學(xué)生認(rèn)知的工具,從而激
發(fā)學(xué)生學(xué)習(xí)和探索數(shù)學(xué)的興趣。
活動(dòng)重點(diǎn):圖形的性質(zhì)和規(guī)律的探索
活動(dòng)難點(diǎn):幾何畫板的操作(作函數(shù)的圖象)
活動(dòng)設(shè)施:微機(jī)室(有液晶投影儀和大屏幕或大彩電);軟件:windows操作平臺(tái)、幾何畫板、office20xx等、教師準(zhǔn)備好的五個(gè)畫板文件:hstx1.gsp、hstx2.gsp、hstx3.gsp 、ymdl1.gsp、ymdl2.gsp。
活動(dòng)過(guò)程:
一、展示活動(dòng)主題和目標(biāo):
二、活動(dòng)過(guò)程:
操作練習(xí)一:
按下列步驟進(jìn)行操作,并回答相應(yīng)的問(wèn)題。
1、打開c:sketchhstx1.gsp畫板文件;
2、拖動(dòng)點(diǎn)E和點(diǎn)F沿坐標(biāo)軸運(yùn)動(dòng)(或雙擊按鈕“動(dòng)畫1”),同時(shí)觀看解析式中的k和b的變化。
、佼(dāng)k>0時(shí),圖象經(jīng)過(guò)哪幾個(gè)象限?
、诋(dāng)k<0時(shí),圖象經(jīng)過(guò)哪幾個(gè)象限?
3、雙擊顯示按鈕后,在k>0和k<0兩種情況下,拖動(dòng)點(diǎn)P沿直線移動(dòng),觀察y隨x怎樣變化?(或雙擊動(dòng)畫2按鈕,單擊鼠標(biāo)左鍵動(dòng)畫停止,要繼續(xù)動(dòng)畫,再雙擊動(dòng)畫2按鈕)
4、先在坐標(biāo)系內(nèi)作出直線(或直接打開文件:c:sketchhstx2.gsp)
附:作圖步驟
①點(diǎn)擊“文件”菜單中的“新繪圖”命令;
、谟谩爸背吖ぞ摺敝械闹本工具,在繪圖板內(nèi)畫一直線,并用文本工具給直線上的兩個(gè)空心點(diǎn)加上標(biāo)簽A和B;
、塾谩斑x擇工具”選中直線后,點(diǎn)擊“度量”菜單中的“方程”命令,得坐標(biāo)系和直線的方程;然后,再進(jìn)行以下操作,并回答問(wèn)題:
。1)用鼠標(biāo)拖動(dòng)直線進(jìn)行平移,k和b中哪個(gè)變,哪個(gè)不變?
。2)當(dāng)直線通過(guò)原點(diǎn)時(shí),b為多少?此時(shí)函數(shù)又叫什么函數(shù)?
。3)拖動(dòng)點(diǎn)A,使直線繞點(diǎn)B旋轉(zhuǎn),觀察直線的傾斜程度與k之間的關(guān)系?
操作練習(xí)二:
1、打開文件:c:sketchhstx3.gsp
2、保持a不變,分別上下移動(dòng)b、c改變b、c的大小時(shí),拋物線的形狀是否變化?上下移動(dòng)a改變a的大小,注意觀看拋物線的開口方向與什么有關(guān)?張口程度與什么有關(guān)?
3、上下移動(dòng)c改變c的大小,看拋物線怎樣變化?
4、分別改變a、b的大小,看拋物線的對(duì)稱軸是否發(fā)生變化?由3和4可知,拋物線的對(duì)稱軸與什么有關(guān)?與什么無(wú)關(guān)?
5、c保持不變,改變a、b時(shí),拋拋線總是經(jīng)過(guò)哪一點(diǎn)?
6、拋物線與x軸交點(diǎn)的個(gè)數(shù)與b2-4ac的符號(hào)有什么關(guān)系?
7、雙擊顯示按鈕,再雙擊動(dòng)畫按鈕,觀察y隨x怎樣變化?
8、當(dāng)a=0時(shí),函數(shù)的圖象是什么?
操作練習(xí)三:
打開文件:c:sketchymdl1.gsp
圓的兩弦AB、CD相交于圓內(nèi)一點(diǎn)P,我們得到 ,如果把點(diǎn)P拖到圓外,上述結(jié)論是否成立?如果點(diǎn)在圓上呢?
操作練習(xí)四:作函數(shù)y=x2-2的圖象
作圖步驟:
1、擊“文件”菜單中“新繪圖”命令,建立新的繪圖板;
2、點(diǎn)擊“圖表”菜單中的“建立坐標(biāo)軸”;
3、在橫坐標(biāo)軸上任找一點(diǎn),用“文本工具”,加上標(biāo)簽“C”,選中C點(diǎn),單擊“度量”菜單中的“坐標(biāo)”命令,得度量值,C:(-2.80,0.00),再用“選擇工具”選擇它。(度量值變黑)
4、點(diǎn)擊“度量”菜單中的“計(jì)算”命令,出現(xiàn)計(jì)算器;
5、點(diǎn)擊“數(shù)值”下拉式菜單中的“點(diǎn)C”的“x”值,按“確定”按紐,得Xc=-2.80 再用“選擇工具”選擇它。(度量值變黑)
6、點(diǎn)擊“度量”菜單中的“計(jì)算”命令,出現(xiàn)計(jì)算器,再點(diǎn)擊“數(shù)值”下拉式菜單中的“x[c]”,分別按計(jì)算器上的“∧”、“2”、“-”、“2”、 “確定”按紐。得到代數(shù)式的值:xc2-2=14.45.
7、用“選擇工具”,分別選中 Xc=-2.80 xc2-2=14.45. (選取第二個(gè)對(duì)象要按鍵盤上的“shift”鍵的同時(shí)再選);
8、點(diǎn)擊“圖表”菜單中的“繪出(x,y)”,得到點(diǎn)“E”。(如果看不到點(diǎn)E,說(shuō)明它不在當(dāng)前的視窗內(nèi),此時(shí)可調(diào)整C點(diǎn),使該點(diǎn)出現(xiàn)在窗口內(nèi));
9、分別選中點(diǎn)E和點(diǎn)C,點(diǎn)擊“作圖”菜單中的“軌跡”,得二次函數(shù)的圖象。
操作練習(xí)五:
運(yùn)用
初中數(shù)學(xué)幾何教案5
教學(xué)設(shè)計(jì)思想:
本節(jié)內(nèi)容是通過(guò)學(xué)生動(dòng)手實(shí)踐去培養(yǎng)學(xué)生的空間思維能力。在教學(xué)中,如果忽略了學(xué)生的動(dòng)手操作而冷冷而談,很容易讓學(xué)生覺得幾何很難,而對(duì)幾何有厭學(xué)的狀態(tài)。因此,在這節(jié)課中通過(guò)學(xué)生動(dòng)手操作,將預(yù)先準(zhǔn)備好的柱體和錐體進(jìn)行展開和拼合,讓學(xué)生在動(dòng)手中體驗(yàn)立體圖形是由平面圖形所圍成的,進(jìn)而讓學(xué)生通過(guò)展開的平面圖進(jìn)行探討,總結(jié)出柱體和錐體的表面展開圖的特點(diǎn)。同時(shí)通過(guò)動(dòng)畫演示,加深了學(xué)生的空間想像的印象,大大調(diào)動(dòng)了學(xué)生的積極性。特別是一道思考題和互問(wèn)互檢自編題,讓學(xué)生各顯神通,發(fā)表自己的看法,創(chuàng)設(shè)情景,根據(jù)本堂課所學(xué)的知識(shí)編一些生動(dòng)有趣的題,這是本節(jié)課中讓我感受最深的一點(diǎn)。
教學(xué)目標(biāo):
1.知識(shí)與技能
進(jìn)一步認(rèn)識(shí)立體圖形與平面圖形的關(guān)系;
知道一個(gè)立體圖形展開的方式不同,得到的平面圖形也不相同,以及計(jì)算相關(guān)幾何體的側(cè)面積與表面積。
2.過(guò)程與方法
在學(xué)習(xí)中要多動(dòng)手進(jìn)行實(shí)物操作,多觀察分析,體驗(yàn)由立體圖形到展開圖和由展開圖到立體圖形的變化過(guò)程。
3.情感、態(tài)度與價(jià)值觀
加強(qiáng)動(dòng)手操作能力,提高觀察、分析能力。
發(fā)展空間想象能力。
教學(xué)重點(diǎn):常見幾何體的展開與折疊及其有關(guān)計(jì)算。
教學(xué)難點(diǎn):常見幾何體的展開與折疊及其有關(guān)計(jì)算。
教學(xué)方法:教師引導(dǎo),學(xué)生自主學(xué)習(xí)。
教學(xué)媒體:電腦、投影儀、紙片、圓規(guī)、量角器。
教學(xué)安排:2課時(shí)。
教學(xué)過(guò)程:
第一課時(shí):
、.創(chuàng)設(shè)問(wèn)題情景,引導(dǎo)學(xué)生觀察、設(shè)想、導(dǎo)入新課
1.演示圓柱體與圓錐體的側(cè)面展開圖。(參看課件圓柱、圓錐)
[教學(xué)說(shuō)明]:復(fù)習(xí)立體圖形的側(cè)面展開圖為平面圖形。
2.剛才演示的只是立體圖形的側(cè)面展開情況,但在實(shí)際生活中,常常需要了解整個(gè)立體圖形展開的形狀,例如要制作一個(gè)常見的粉筆盒(手舉粉筆盒),只知道它的側(cè)面展開圖是不夠的,因?yàn)樗有上下兩個(gè)底,那么,將粉筆盒展開后是什么圖形呢?
、.學(xué)生通過(guò)直觀感知、操作確認(rèn)等實(shí)踐活動(dòng),加強(qiáng)對(duì)立體圖形的認(rèn)識(shí)和感知
活動(dòng)1:
某外包裝盒的形狀是棱柱,它的兩底面都是水平的,側(cè)棱都是豎直的(這樣的棱柱叫做直棱柱)。沿它的棱剪開、鋪平,就得到了它的平面展開圖。
教師課前可以準(zhǔn)備一個(gè)六棱柱的模型,現(xiàn)在給學(xué)生演示由幾何體展開得到他的平面圖形。
然后教師提出問(wèn)題:
問(wèn)題1:這個(gè)棱柱有幾個(gè)側(cè)面?每個(gè)側(cè)面是什么形狀?
問(wèn)題2:這個(gè)棱柱的上、下底面的形狀一樣嗎?它們各有幾條邊?
問(wèn)題3:側(cè)面的個(gè)數(shù)與底面圖形的邊數(shù)有什么關(guān)系?
問(wèn)題4:這個(gè)棱柱有幾條側(cè)棱?它們的長(zhǎng)度之間有什么關(guān)系?
問(wèn)題5:側(cè)面展開圖的長(zhǎng)和寬分別與棱柱地面的周長(zhǎng)和側(cè)棱長(zhǎng)有什么關(guān)系?
教師通過(guò)實(shí)例展示,學(xué)生很容易回答上述問(wèn)題(教師可以挑選中下等的學(xué)生回答)。
[教法]:上面所給的五個(gè)問(wèn)題的結(jié)論,實(shí)際上是直棱柱的性質(zhì)與特點(diǎn),建議讓學(xué)生通過(guò)觀察模型進(jìn)行直觀感受。
活動(dòng)2:
1.制作圓錐并計(jì)算其相關(guān)的量。
(1)在紙上畫一個(gè)半徑為6cm,圓心角為216的扇形。
(2)將這個(gè)扇形剪下來(lái),按下圖所示圍成一個(gè)圓錐。
(3)指出這個(gè)圓錐的母線的長(zhǎng),并求圓錐的高和底面的半徑(粘合部分忽略不計(jì))。
第一問(wèn)與第二問(wèn)讓學(xué)生自己親自動(dòng)手操作,教師巡視,發(fā)現(xiàn)問(wèn)題時(shí)引導(dǎo)學(xué)生。
第三問(wèn)再讓學(xué)生思考,得出結(jié)論:圓錐的母線長(zhǎng)恰是扇形的半徑長(zhǎng),圓錐的底面周長(zhǎng)是扇形的弧長(zhǎng)。
設(shè)圓錐的底面半徑為r,
在Rt△SOD中,
2.下圖是四個(gè)幾何體的平面展開圖,請(qǐng)用紙分別復(fù)制下來(lái),按虛線折疊,圍成幾何體,并指出圍成的幾何體的形狀。
學(xué)生動(dòng)手,通過(guò)實(shí)際動(dòng)手操作,觀察通過(guò)折疊,都能圍成什么樣的幾何體。
學(xué)生回答:分別是四棱柱、四棱錐、三棱錐、三棱錐。
[教法]:目的是培養(yǎng)學(xué)生動(dòng)手操作的能力。
Ⅲ.練習(xí)
1.下列各圖是幾何體的平面展開圖,請(qǐng)按圖中虛線進(jìn)行折疊,并說(shuō)出折疊后形成的幾何體的形狀。
2.下列圖形分別是兩個(gè)幾何體的平面展開圖,請(qǐng)分別將它們圍成幾何體,并說(shuō)出這個(gè)幾何體的形狀。
答案:1.(1)正方體;(2)正方體;(3)三棱柱;(4)五棱柱。
2.圓錐和圓柱。
、.課堂小結(jié)
本節(jié)課主要是通過(guò)學(xué)生親自動(dòng)手操作,了解棱柱的主要特點(diǎn),了解棱錐、棱柱的側(cè)面展開圖,掌握各個(gè)量的關(guān)系。
板書設(shè)計(jì):
課題:
一、創(chuàng)設(shè)情境,引入主題 三、練習(xí)
二、新授 四、總結(jié)
活動(dòng)1:
活動(dòng)2:
第二課時(shí):
、.師:上節(jié)課我們一起通過(guò)實(shí)踐的方法了解了常見幾何體的展開圖,現(xiàn)在我們就在此基礎(chǔ)上來(lái)進(jìn)一步學(xué)習(xí)如何應(yīng)用幾何體的展開圖。
活動(dòng)1:
參看下面這個(gè)例題:
1.圖37-38和圖37-39分別是某幾何體的三視圖。(單位:mm)
。1)請(qǐng)分別說(shuō)出它們所對(duì)應(yīng)的'幾何體的名稱。
。2)分別計(jì)算這兩個(gè)幾何體的表面積。
(3)小明認(rèn)為,圖37-39所示三視圖所對(duì)應(yīng)的幾何體的表面積,就是圖37-39中的兩個(gè)主視圖、兩個(gè)左視圖和一個(gè)俯視圖的面積的和。你認(rèn)為小明的想法正確嗎?為什么?
教師與學(xué)生一起探究:
。1)分別為圓柱和底面是等腰三角形的三棱柱。
。2)圓柱的表面積是 。
首先,計(jì)算柱體三個(gè)側(cè)面的面積。其中一個(gè)側(cè)面面積為 20xx=800(mm2)。
另兩個(gè)側(cè)面面積是相同的,每個(gè)側(cè)面的長(zhǎng)為44mm,寬為 。
這個(gè)側(cè)面的面積為 。
其次,計(jì)算兩個(gè)底面的面積和:
所以,三棱柱的表面積是
。3)這種想法是不對(duì)的。三視圖是一種正投影,受擺放位置的影響,各視圖的形狀與其所對(duì)應(yīng)的幾何體的表面形狀可能不一致,因此,不能簡(jiǎn)單地用視圖的面積去計(jì)算幾何體的表面積。
[教法]:目的是體會(huì)幾何體與其展開圖之間的區(qū)別與聯(lián)系。
2.一個(gè)外形為長(zhǎng)方形的紙箱的大小如下圖所示(單位:cm),一只昆蟲要從紙箱的頂點(diǎn)A沿表面爬到另一個(gè)頂點(diǎn)B,它沿哪條路線爬行的距離最短?請(qǐng)說(shuō)明理由,并求出這個(gè)最短距離。
觀察下面小亮解答問(wèn)題的過(guò)程,想一想他的解法是否正確。為什么?
小亮是這樣回答的:
將紙箱看成長(zhǎng)方體,它的平面展開圖如圖37-41所示。連結(jié)AB,根據(jù)兩點(diǎn)間線段最短,可知線段AB就是昆蟲爬行距離最短的路線。
在Rt△ACB中,根據(jù)勾股定理,有AB=
教師分析:從最后結(jié)論看,小明的解答是正確的,但他分析問(wèn)題的過(guò)程還不全面。
因?yàn)閺腁處沿紙箱表明到B處有無(wú)數(shù)條路線可走。而供選擇的最短路線只有3條。即
。1)昆蟲沿面EDCA和面EDBG從A處到B處,展開圖如圖37-41所示。最短距離是小亮所求的值。
。2)昆蟲沿左側(cè)面和上面EDBG從點(diǎn)A到點(diǎn)B,展開圖1所示。最短距離為
。3)昆蟲沿面EDCA和面DBFC從點(diǎn)A到點(diǎn)B,展開圖2所示。最短距離為
比較上面(1)(2)(3)的距離知,最短路線是沿面EDCA和面EDBG從A到B的折線。
教師給同學(xué)們演示螞蟻在幾何體上爬行路線(參看視頻:螞蟻)
活動(dòng)2:
師:通過(guò)上面例題的分析,我們思考這道題如何解答:
一個(gè)直六棱柱的上、下底面分別是邊長(zhǎng)為1cm的正六邊形,側(cè)棱長(zhǎng)為10cm,請(qǐng)計(jì)算它的表面積。
讓學(xué)生自己思考,通過(guò)畫圖來(lái)觀察各個(gè)量之間的關(guān)系,然后計(jì)算。
、.練習(xí)
1.用膠滾子沿從左到右的方向?qū)D案涂到墻上,在下面給出的四個(gè)圖案中,用圖示的膠滾子涂出的圖案是哪個(gè)?
2.一個(gè)棱柱的展開圖如圖所示,AB=3cm,AC=5cm,
。1)請(qǐng)指出它是幾棱柱。
。2)請(qǐng)計(jì)算它的側(cè)面積。
、.課堂小結(jié)
本節(jié)課是在上節(jié)課所學(xué)的基礎(chǔ)上,即通過(guò)幾何體的展開圖確定和制作立體模型,再在此基礎(chǔ)上計(jì)算相關(guān)幾何體的側(cè)面積和表面積。
板書設(shè)計(jì):
課題(2)
一、活動(dòng)1: 活動(dòng)2:
1.
二、練習(xí)
2. 三、小結(jié):
初中數(shù)學(xué)幾何教案6
初中數(shù)學(xué)幾何證明教案模板范文
一、徹底搞清定義、定理、公理的真正含義
要想讓學(xué)生寫出思路清晰、層次分明的幾何證明題的書寫過(guò)程。首先最關(guān)鍵的一步就是要讓學(xué)生徹底分清定義、定理、公理的題設(shè)和結(jié)論,真正理解其真實(shí)含義。只有這樣,學(xué)生才能在以后的證明過(guò)程中,正確地利用它來(lái)證明相關(guān)結(jié)論。反之,如果你對(duì)定理的內(nèi)容都沒(méi)有真正理解,而是含糊其詞,是是而非,或者本身就不知道有這樣一個(gè)定理,那么你在以后的證明過(guò)程中,就不能正確地應(yīng)用這個(gè)定理或者就不知道應(yīng)用這個(gè)定理,整個(gè)證明過(guò)程就會(huì)陷入僵局。同時(shí),我們還要讓學(xué)生把握清楚定理的內(nèi)涵,不能對(duì)定理的理解有模棱兩可、含糊其詞之感。例如,在學(xué)習(xí)等腰三角形的“三線合一”這一定理時(shí),有些同學(xué)就理解不清,沒(méi)有真正掌握其含義,甚至自己都感到有些困惑,致使在應(yīng)用時(shí)出現(xiàn)一些小錯(cuò)誤。我們都知道這個(gè)定理的正確用法是,在知道一個(gè)三角形是等腰三角形的大前提下,其中“頂角的平分線”、“底邊上的高”、“底邊上的中線”三者知道一個(gè),就可以得到另外兩個(gè)結(jié)論。而有些沒(méi)有真正理解其含義的同學(xué)就這樣寫道:(如圖)
在△ABC中
∵AB=AC,AD⊥BC,BD=CD
∴AD平分∠BAC
顯然,這是不恰當(dāng)?shù)。原因就在于沒(méi)有真正理解等腰三角形“三線合一”這一定理的內(nèi)涵,應(yīng)該去掉“AD⊥BC”和“BD=CD”中的任一個(gè)。
二、加強(qiáng)三種幾何語(yǔ)言的教學(xué),特別是符號(hào)語(yǔ)言
幾何語(yǔ)言包括三種不同形式的語(yǔ)言,即文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言。對(duì)定理、公理的教學(xué),我們老師不僅要讓學(xué)生掌握定理對(duì)應(yīng)的三種語(yǔ)言,還要培養(yǎng)學(xué)生對(duì)三種語(yǔ)言的轉(zhuǎn)換能力。由于三種語(yǔ)言的不同特點(diǎn),在教學(xué)中各自發(fā)揮的作用也不相同。在三種語(yǔ)言中,符號(hào)語(yǔ)言是幾何初學(xué)者最難掌握的一種,也是邏輯推理必備的能力基礎(chǔ),因?yàn)榭荚囍械淖C明題要用符號(hào)語(yǔ)言來(lái)體現(xiàn)。我們老師在教學(xué)中如何讓學(xué)生掌握好符號(hào)語(yǔ)言呢?在教學(xué)某一定理時(shí),首先要讓學(xué)生在理解的基礎(chǔ)上,結(jié)合圖形能用自己的語(yǔ)言進(jìn)行描述(即文字語(yǔ)言),然后再引導(dǎo)學(xué)生如何用符號(hào)語(yǔ)言進(jìn)行“翻譯”。例如在教學(xué)“角平分線上的點(diǎn)到角的兩邊的距離相等”這一定理時(shí)。首先,我們老師要引導(dǎo)學(xué)生用什么樣的方法證明這一定理,然后引導(dǎo)學(xué)生用自己的話表述這一性質(zhì),最后訓(xùn)練學(xué)生如何用符號(hào)來(lái)描述這一定理。這一定理的題設(shè)中,關(guān)鍵的'兩點(diǎn)即“角平分線”和“角平分線上的點(diǎn)到角的兩邊的距離”,如何用符號(hào)表示呢?結(jié)論中的“相等”,又如何用符號(hào)表示呢?(如圖),
題設(shè)中的“兩點(diǎn)”可以這樣用符號(hào)表示:
∠1=∠2,CD⊥AO, CE⊥BO,
結(jié)論中的“相等”可表示為:CD=CE
如果我們以后用到這一性質(zhì)時(shí),就可以這樣寫了:
∵∠1=∠2,CD⊥AO, CE⊥BO
∴CD=CE
三、理清思路,做到層次分明
我們老師在批改學(xué)生的證明題時(shí),常常會(huì)發(fā)現(xiàn)這樣的現(xiàn)象:為了證明某一結(jié)論,假設(shè)需要通過(guò)兩步“同等身份”的推理,才能得出最后的結(jié)論,個(gè)別學(xué)生在證明時(shí),往往兩步的推理互相穿插,第一步證明的推理在第二步中有出現(xiàn),第二步的推理在第一步中也有體現(xiàn)。也就是說(shuō),思路不清,條理不清晰。出現(xiàn)這種現(xiàn)象的原因還是在書寫過(guò)程之前,思路不清、層次不分明。針對(duì)這種現(xiàn)象,我們老師要幫助學(xué)生細(xì)細(xì)分析清楚后,再讓學(xué)生書寫過(guò)程。例如有這樣一道證明題:(如圖)
已知:如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,BE‖AC,CE‖BD。
求證:四邊形OBEC是菱形。
針對(duì)這一題目,引導(dǎo)學(xué)生通過(guò)分析后,發(fā)現(xiàn)這個(gè)題目只要證明“兩大塊”就行了,即證“OB=OC”和“四邊形OBEC為平行四邊形”,然后再引導(dǎo)學(xué)生這“兩大塊”又分別怎樣用符號(hào)語(yǔ)言表述就可以了。當(dāng)然,這“兩大塊”的證明不分先后。通過(guò)這樣的分析后,學(xué)生在書寫時(shí)就不會(huì)出現(xiàn)證明“OB=OC”時(shí)出現(xiàn)“BE‖AC”這樣的“不速之客”了。
四、掌握幾何證明題常用的分析方法
幾何證明題常用的分析方法有綜合法和分析法,另外還有一種就是分析法和綜合法的結(jié)合使用。那么我們?cè)谧C明某一結(jié)論時(shí),到底用上述三種方法的哪一種呢?這要根據(jù)具體的問(wèn)題,具體的情況進(jìn)行決定。有時(shí)一個(gè)待證的結(jié)論分析法也可以,綜合法也可以,都比較容易找到解決問(wèn)題的思路,但有時(shí)一個(gè)待證的結(jié)論,這兩種方法都不奏效,都不容易找到解決問(wèn)題的方法,這時(shí)我們不妨把這兩種方法結(jié)合起來(lái)使用,或許能找到“突破點(diǎn)”。因此,我們老師要讓學(xué)生在解決證明題的過(guò)程中,自己要注意總結(jié)和反思,靈活掌握上述的三種方法。只有這樣才能在尋求解決問(wèn)題方案的過(guò)程中游刃有余。
五、多鼓勵(lì)學(xué)生
剛剛學(xué)習(xí)幾何證明題書寫的學(xué)生,在書寫的過(guò)程中肯定要或多或少地出現(xiàn)這樣或那樣的錯(cuò)誤。我們老師在對(duì)待這一問(wèn)題時(shí),不要急躁,要耐心地對(duì)學(xué)生進(jìn)行講解和引導(dǎo),多鼓勵(lì)、多表?yè)P(yáng)他們。不理想的推理步驟要不斷改進(jìn),同時(shí)引導(dǎo)學(xué)生自己多領(lǐng)悟多反思一下。這樣,學(xué)生就不會(huì)失去這方面的信心,他們會(huì)做得越來(lái)越好。
總之,對(duì)學(xué)生幾何證明題書寫的教學(xué),我們老師要有足夠的耐心,采取不同的教學(xué)思路和方法,引導(dǎo)和鼓勵(lì)學(xué)生循序漸進(jìn)地掌握正確書寫的方法和技巧。只有這樣,學(xué)生才能書寫出思路清晰、層次分明的幾何證明題書寫過(guò)程。
初中數(shù)學(xué)幾何教案7
教學(xué)目標(biāo):
知識(shí)與技能:經(jīng)歷從不同方向觀察物體的活動(dòng)過(guò)程,體會(huì)出從不同方向看同一物體,可能看到不同的結(jié)果;能識(shí)別從不同方向看幾何體得到相應(yīng)的平面圖形。
過(guò)程與方 法:通過(guò)觀察能畫出不同角度看到的平面圖形(三視圖)。
情感態(tài)度與價(jià)值觀:體會(huì)視圖是描述幾何體的重要工具,使學(xué)生明白看待事物時(shí),要從多個(gè)方面進(jìn)行。
教學(xué)重點(diǎn):學(xué)會(huì)從不同方向看實(shí)物的方法,畫出三視圖。
教學(xué)難點(diǎn):畫出三視圖,由三 視圖判斷幾何體。
教材分析:本節(jié)內(nèi)容是研究立體圖形的又一重要手 段,是一種獨(dú)立的研究方法,與前后知識(shí)聯(lián)系不大,學(xué)好本課的關(guān)鍵是尊重視覺效果,把立體圖形映射成平面圖形,其間要進(jìn)行三維到二維這一實(shí)質(zhì)性的變化。在由三視圖還原立體圖形時(shí),更需要一個(gè)較長(zhǎng)過(guò)程,所以本節(jié)用學(xué)生比較熟悉的幾何體來(lái)降低難度。
教學(xué)方法:情境引入 合作 探究
教學(xué)準(zhǔn)備:課件,多組簡(jiǎn)單實(shí)物、模型。
課時(shí)安排:1課時(shí)
環(huán)節(jié) 教 師 活 動(dòng) 學(xué)生活動(dòng) 設(shè) 計(jì) 意 圖
創(chuàng)
設(shè)
情
境 教師播放多媒體課件,演示廬山景觀,請(qǐng)學(xué)生背誦蘇東坡《題西林壁》, 并說(shuō)說(shuō)詩(shī)中意境。
并出現(xiàn):橫看成嶺側(cè)成峰,
遠(yuǎn)近高低各不同。
不識(shí)廬山真面目,
只緣身在此山中。
觀賞美景
思考“嶺”與“峰”的區(qū)別。 跨越學(xué)科界限,營(yíng)造一個(gè)嶄新的`教學(xué)學(xué)習(xí)氛圍,并從中挖掘蘊(yùn)含的數(shù)學(xué)道理。
新
課
探
究
一
1、教師出示事先準(zhǔn)備好的實(shí)物組合體,請(qǐng)三名學(xué)生分別站在講臺(tái)的左側(cè)、右側(cè)和正前方觀察,并讓他們畫出草圖,其他學(xué)生分成三組,分別對(duì)應(yīng)三個(gè)同學(xué),也分別畫出 所見圖形的草圖。
2、看課本13頁(yè)“觀察與思考”。
圖:
你能說(shuō)出情景的先后順序嗎?你是通過(guò)哪些特征得出這個(gè)結(jié)論的?
總結(jié):通過(guò)以前經(jīng)驗(yàn),我們可知,從不同的方向看物體,可能看到不同圖形。
3、從實(shí)際生活中舉例。
觀察,動(dòng)手畫圖。
學(xué)生觀察圖片,把圖片按時(shí)間先后排序。
利用身邊的事物,有助于學(xué)生積極主動(dòng)參與,激發(fā)學(xué)生潛能,感受新知。
讓學(xué)生感知文本提高自學(xué)能力。
利于拓寬學(xué)生思維。
新
課
探
究
二 1、感知文本。學(xué)生閱讀13頁(yè)“觀察與思考2”,
圖:
2、上升到理性知識(shí):
。1)從上面看到的圖形叫俯視圖;
。2)從左面看到的圖形叫左視圖;
。3)右正面看到的圖形叫主視圖;
3、練一練:分別畫出14頁(yè)三種立體圖形的三視圖,并回答課本上 三個(gè)問(wèn)題。(強(qiáng)調(diào)上下左右的方位不要出錯(cuò)) 學(xué)生閱讀,想象。
學(xué)生分組練習(xí),合作交流。 把已有經(jīng)驗(yàn)重新建構(gòu)。
感性知識(shí)上升到理性知識(shí) 。
體會(huì)學(xué)習(xí)成果,使學(xué)生產(chǎn)生成功的喜 悅。
新課探究三 1、連線,把左面的三視圖與右邊的立體圖形連接起來(lái)。
主視圖 俯視圖 左視圖 立體圖形
2、歸納:多媒體課件演示
先由其中的兩個(gè)圖為依據(jù),進(jìn)行組合,用第三個(gè)圖進(jìn)行檢驗(yàn)。
學(xué)生自己先獨(dú)立思考,得出答案后,小組之間合作交流,互相評(píng)價(jià)。
以小組為單位討論思考問(wèn)題的方法。
把由空間到平面的轉(zhuǎn)化過(guò)程逆轉(zhuǎn)回去,充分利用本課前階段的感知,可以降低難度。
課堂反饋
1、考查學(xué)生的基礎(chǔ)題。
2、用小立方體搭成一個(gè)幾何體,使它的主視圖和俯視圖如圖所示, 搭建這樣的幾何體,最多需要幾個(gè)小立方體?至少需要幾個(gè)小立方體?
主視圖 俯視圖 學(xué)生獨(dú)立自檢
學(xué)生總結(jié)出以俯視圖為基礎(chǔ) ,在方格上標(biāo)出數(shù)字。
簡(jiǎn)單知識(shí),基本方法的綜合
課堂總結(jié)
1、學(xué)習(xí)到什么知識(shí)?
2、學(xué)習(xí)到什么方法?
3、哪些知識(shí)是自己發(fā)現(xiàn)的?
4、哪些知識(shí)是討論得出的?
學(xué)生反思
歸納 讓學(xué)生有成功喜悅,重視與他人合作。
附:板書設(shè)計(jì)
1.4 從不同方向看幾何體
教學(xué)反思:
從 蘇東坡的詩(shī)詞《題西林壁》引,配以多彩的畫面,為學(xué)生營(yíng)造一個(gè)寬松、生動(dòng)的教學(xué)環(huán)境。通過(guò)學(xué)生分組討論,動(dòng)手操作,師生、學(xué)生之間的合作交流,并輔以多媒體課件的合理應(yīng)用,讓學(xué)生完全處于一種高參與狀態(tài)。最終實(shí)現(xiàn) 了素材與實(shí)際相結(jié)合,經(jīng)驗(yàn)與挑戰(zhàn)相作用,立體與平面相轉(zhuǎn)換。本課中引入了課本中沒(méi)有而學(xué)生也能接受的三個(gè)概念:主視圖、俯視圖、左視圖。教者很難把握學(xué)生的
初中數(shù)學(xué)幾何教案8
課 題:幾何畫板簡(jiǎn)介
教學(xué)目標(biāo):1)通過(guò)幾何畫板課件演示展示其魅力激起興趣
2)了解幾何畫板初步操作
教學(xué)重點(diǎn):讓學(xué)生了解幾何畫板的工作界面
教學(xué)難點(diǎn):能用幾何畫板將三角形分成四等份,并用幾何畫板驗(yàn)證。 教學(xué)過(guò)程:
一、概述幾何畫板
幾何畫板是專門為數(shù)學(xué)學(xué)習(xí)與教學(xué)需要而設(shè)計(jì)的軟件。有人說(shuō)它是電子圓規(guī),有人說(shuō)它是繪圖儀,有人說(shuō)它是數(shù)學(xué)實(shí)驗(yàn)室。它號(hào)稱二十一世紀(jì)的動(dòng)態(tài)幾何。它可幫助我們理解數(shù)學(xué),動(dòng)態(tài)地表達(dá)數(shù)量關(guān)系,并可設(shè)計(jì)出許多有用或有趣的作品。
二、幾何畫板作品展示
三、幾何畫板簡(jiǎn)介
1)啟動(dòng)
開始|程序|幾何畫板|幾何畫板。啟動(dòng)幾何畫板后將出現(xiàn) 菜單、工具、 畫板。工具(從上到下) 選擇 、畫點(diǎn)、畫圓 、畫線、 文本 、對(duì)象信息、 腳本工具目錄。
2)操作初步
1、文件
新畫板 打開一個(gè)新的空白畫板。
新腳本 打開一個(gè)新的空白腳本窗口。用于錄制畫板的`畫圖過(guò)程。 打開 打開一個(gè)已存在的畫板文件(.gsp)或腳本文件(.gss)。
保存 [保存當(dāng)前畫板窗口畫板文件或腳本窗口腳本文件],路徑+文件名,確認(rèn)。
打印預(yù)覽
打印
退出
2、 選擇 幾何畫板的操作都是先選定,后操作。
選工具(選擇 畫點(diǎn) 畫圓 畫線 文本 對(duì)象信息 腳本工具目錄) 單擊:工具選項(xiàng)。
選選擇方式 移到選擇按左鍵不放→平移/旋轉(zhuǎn)/縮放;拖曳到平移/旋轉(zhuǎn)/縮放;放→選定。
功能:移動(dòng)選定的目標(biāo)按 平移/旋轉(zhuǎn)/縮放 方式移動(dòng)。
選一個(gè)目標(biāo) 鼠標(biāo)對(duì)準(zhǔn)畫板中的目標(biāo)(點(diǎn)、線、圓等),指針變?yōu)闄M向箭頭,單擊。
選兩個(gè)以上目標(biāo) 法一 第二個(gè)及以后,Shift+單擊。
選兩個(gè)以上目標(biāo) 法二 空白處拖曳→虛框;虛框中的目標(biāo)被選。 選角 選三點(diǎn):第一、第三點(diǎn):角兩邊上的點(diǎn);第二點(diǎn):頂點(diǎn)。 不選 單擊:空白處。
從多個(gè)選中的目標(biāo)中不選一個(gè) Shift+單擊。
選目標(biāo)的父母和子女 選定,編輯|選擇父母/或選擇子女。
選所有 編輯|選擇所有。
選畫點(diǎn)/畫圓...,編輯|選擇所有點(diǎn)/圓...。
3、刪除
刪除目標(biāo) 選目標(biāo);Del鍵(注:同時(shí)刪除子女目標(biāo))。
復(fù)原一步 Ctrl+Z = 編輯|復(fù)原。
畫板變成空白畫板 Shift+Ctrl+Z = Shift+編輯|復(fù)原。
4、顯示
線類型 設(shè)置選定的線/軌跡 為 粗線/細(xì)線/虛線。應(yīng)用 使對(duì)象更突出。 顏色 設(shè)置選定的圖形的顏色。應(yīng)用 使對(duì)象更突出。
字號(hào)/字型 設(shè)置選定的標(biāo)注、符號(hào)、測(cè)算等文字的字號(hào)和字型。
字體 設(shè)置選定的標(biāo)注、符號(hào)、測(cè)算等文字的字體。
顯示/隱藏 顯示/隱藏 選定的目標(biāo)(Ctrl+H)。
顯示所有隱藏 顯示所有的隱藏目標(biāo)。
顯示符號(hào) 顯示/隱藏 選定目標(biāo)的符號(hào)。
符號(hào)選項(xiàng) 更改 符號(hào)/符號(hào)序列。
軌跡跟蹤 設(shè)置/消除 選定目標(biāo)為軌跡跟蹤狀態(tài)。
動(dòng)畫 根據(jù)選定的目標(biāo)條件進(jìn)行動(dòng)畫運(yùn)動(dòng)。
參數(shù)設(shè)置 角度、弧度、精確度等的設(shè)置。
5、對(duì)象信息 單擊對(duì)象信息→?;單擊對(duì)象→簡(jiǎn)單信息;雙擊對(duì)象→目標(biāo)信息對(duì)話框。
6、快捷鍵 隱藏Ctrl+H顯示符號(hào)Ctrl+K軌跡跟蹤C(jī)trl+T當(dāng)前目標(biāo)可操作的內(nèi)容右鍵。
。ㄒ陨虾(jiǎn)略選講1、2、3)
四、熟悉幾何畫板的界面,了解常用工具的用法,
五、把一個(gè)三角形分成四等份:
1)用畫線工具畫一個(gè)三形,2)標(biāo)注:選文本工具,單擊畫好的點(diǎn),用文本工具雙擊顯示的標(biāo)簽,可進(jìn)行修改。
3)選擇“構(gòu)造”,---“畫中點(diǎn)”
六、驗(yàn)證面積相等:
1)按住shift鍵,選取點(diǎn)。
2)“構(gòu)造”---“多邊形內(nèi)部”。
3)“測(cè)算”---“面積”
七、等分線段:
1)畫射線作輔助線。
2)選取一段做標(biāo)記向量。
3)“變換”---“平移”。
4)“作圖”---“平行線”。
用平行線的性質(zhì)等分線段。
八、畫基本圖形
1、畫點(diǎn) 選畫點(diǎn),單擊畫板上一點(diǎn)。(并顯示標(biāo)簽)
2、畫圓 畫圓的兩種方法及區(qū)別。 (設(shè)置不同顯示方式)
3、選線段/射線/直線 選畫線;按左鍵不放→線段/射線/直線
九、課后反思
在圖中標(biāo)注文本文字,用輔助線把一線段如何分為四等份
初中數(shù)學(xué)幾何教案9
教學(xué)目標(biāo):
1、使學(xué)生理解切割線定理及其推論;
2、使學(xué)生初步學(xué)會(huì)運(yùn)用切割線定理及其推論.
3、通過(guò)對(duì)切割線定理及推論的證明,培養(yǎng)學(xué)生從幾何圖形歸納出幾何性質(zhì)的能力;
4、通過(guò)對(duì)切割線定理及其推論的初步運(yùn)用,培養(yǎng)學(xué)生的分析問(wèn)題能力.在上節(jié)我們?cè)?jīng)學(xué)到相交弦定理及其推論,它反映了圓中兩弦的數(shù)量關(guān)系;我們可以用同樣的方法來(lái)研究圓的一條切線和一條割線的數(shù)量關(guān)系.
教學(xué)重點(diǎn):
使學(xué)生理解切割線定理及其推論,它是以后學(xué)習(xí)中經(jīng)常用到的重要定理.
教學(xué)難點(diǎn):
學(xué)生不能準(zhǔn)確敘述切割線定理及其推論,針對(duì)具體圖形學(xué)生很容易得到數(shù)量關(guān)系,但把它用語(yǔ)言表達(dá),學(xué)生感到困難.教學(xué)過(guò)程:
一、新課引入:
我們已經(jīng)學(xué)過(guò)相交弦定理及其推論,現(xiàn)在我們用同樣的數(shù)學(xué)思想方法來(lái)研究圓的另外的比例線段.
二、新課講解:
現(xiàn)在請(qǐng)同學(xué)們?cè)诰毩?xí)本上畫O,在O外一點(diǎn)P引O的切線PT,切點(diǎn)為T,割線PBA,以點(diǎn)P、B、A、T為頂點(diǎn)作三角形,可以作幾個(gè)三角形呢?它們中是否存在著相似三角形?如果存在,你得到了怎樣的比例線段?可轉(zhuǎn)化成怎樣的積式?現(xiàn)在請(qǐng)同學(xué)們打開練習(xí)本,按要求作O的.切線PT和割線PBA,后研究討論一下.
學(xué)生動(dòng)手畫圖,完成證明,教師巡視,當(dāng)所有學(xué)生都得到數(shù)量關(guān)系式時(shí),教師打開計(jì)算機(jī)或幻燈機(jī)用動(dòng)畫演示.
最終教師指導(dǎo)學(xué)生把數(shù)量關(guān)系轉(zhuǎn)成語(yǔ)言敘述,完成切割線定理及其推論.
1.切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng).
2關(guān)系式:PT=PA·PB
2.切割線定理推論:從圓外一點(diǎn)引圓的兩條割線.這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等.
數(shù)量關(guān)系式:PA·PB=PC·PB.
切割線定理及其推論也是圓中的比例線段,在今后的學(xué)習(xí)中有著重要的意義,務(wù)必使學(xué)生清楚,真正弄懂切割線定理的數(shù)量關(guān)系后,再把握定理敘述中的“從”、“引”、“切線長(zhǎng)”、“兩條線段長(zhǎng)”等關(guān)鍵字樣,定理敘述并不困難.
練習(xí)一,P.128中
1、選擇題:如圖7-86,O的兩條弦AB、CD相交于點(diǎn)E,AC和DB的延長(zhǎng)線交于點(diǎn)P,下列結(jié)論成立的是[]
A.PC·CA=PB·BDB.CE·AE=BE·EDC.CE·CD=BE·BAD.PB·PD=PC·PA答案:(D),直接運(yùn)用和圓有關(guān)的比例線段進(jìn)行選擇.
練習(xí)二,P.128中
2、如圖7-87,已知:Rt△ABC的兩條直角邊AC、BC的長(zhǎng)分別為3cm、4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,求BD的長(zhǎng).
此題已知Rt△ABC中的邊AC、BC,則AB可知.容易證出BC切O于C,于是產(chǎn)生切割線定理,BD可求.
練習(xí)三,P.128中3.如圖7-88,線段AB和O交于C、D,AC=BD,AE、BF分別切O于E、F.
求證:AE=BF.
本題可直接運(yùn)用切割線定理.
例3P.127,如圖7-89,已知:O的割線PAB交O于點(diǎn)A和B,PA=6cm,AB=8cm,PO=.
求O的半徑.
此題要通過(guò)計(jì)算得到O的半徑,必須使半徑進(jìn)入一個(gè)數(shù)量關(guān)系式,觀察圖形,可知只要延長(zhǎng)PO與圓交于另一點(diǎn),則可產(chǎn)生切割線定理的推論,而其中一條割線恰好經(jīng)過(guò)圓心,在線段中自然可以參與進(jìn)半徑,從而由等式中求出半徑.必須使學(xué)生清楚這種數(shù)學(xué)思想方法,結(jié)合圖形,正確使用和圓有關(guān)的比例線段,則關(guān)系式中必有兩條線段是半徑的代數(shù)式構(gòu)成,只要解關(guān)于半徑的一元二次方程即可.
解:設(shè)O的半徑為r,PO和它的長(zhǎng)延長(zhǎng)線交O于C、D.
(+r)=6×14r=(取正數(shù)解)答:O的半徑為.
三、課堂小結(jié):
為培養(yǎng)學(xué)生閱讀教材的習(xí)慣,讓學(xué)生看教材P.127—P.128.總結(jié)出本課主要內(nèi)容:
1.切割線定理及其推論:它是圓的重要比例線段,它反映的是圓的切線和割線所產(chǎn)生的數(shù)量關(guān)系.需要指出的是,只有從圓外一點(diǎn),才可能產(chǎn)生切割線定理或推論.切割線定理是指一條切線和一條割線;推論是指兩條割線,只有使學(xué)生弄清前提,才能正確運(yùn)用定理.
2.通過(guò)對(duì)例3的分析,我們應(yīng)該掌握這類問(wèn)題的思想方法,掌握規(guī)律、運(yùn)用規(guī)律.
四、布置作業(yè):
1.教材P.132中10;2.P.132中11.
【初中數(shù)學(xué)幾何教案】相關(guān)文章:
中班數(shù)學(xué)復(fù)習(xí)幾何圖形教案03-30
大班數(shù)學(xué)認(rèn)識(shí)幾何圖形教案03-28
《王幾何》教案02-27
中班數(shù)學(xué)教案《有趣的幾何圖形》01-06
小班數(shù)學(xué)教案《復(fù)習(xí)幾何圖形》03-21
幼兒數(shù)學(xué)幾何圖形教案(通用12篇)12-29
數(shù)學(xué)幾何之美名言名句05-12