国产真实乱子伦精品,国产精品100页,美女网站色免费,国产白嫩美女免费观看,欧美精品亚洲,欧美韩国xxx,欧美性猛交xxxxxxxx软件

高中必修數(shù)學(xué)教案

時(shí)間:2023-01-08 11:32:24 高中數(shù)學(xué)教案 我要投稿

高中必修數(shù)學(xué)教案5篇

  在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,通常需要準(zhǔn)備好一份教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。如何把教案做到重點(diǎn)突出呢?以下是小編為大家收集的高中必修數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。

高中必修數(shù)學(xué)教案5篇

高中必修數(shù)學(xué)教案1

  第一章:空間幾何體

  1.1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能

  (1)通過(guò)實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

  (2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。

 。3)會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

  (4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。

  2.過(guò)程與方法

 。1)讓學(xué)生通過(guò)直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。

 。2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。

  3.情感態(tài)度與價(jià)值觀

 。1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。

  (2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。

  難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

  三、教學(xué)用具

 。1)學(xué)法:觀察、思考、交流、討論、概括。

  (2)實(shí)物模型、投影儀

  四、教學(xué)思路

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1.教師提出問(wèn)題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。

  2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過(guò)觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。

 。ǘ、研探新知

  1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。

  2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?

  3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

  4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的.表示。

  5.提出問(wèn)題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?請(qǐng)列舉身邊具有已學(xué)過(guò)的幾何結(jié)構(gòu)特征的物體,并說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

  6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

  7.讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

  8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

  9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。

  10.現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺(tái)、球等幾何結(jié)構(gòu)特征的物體組合而成。請(qǐng)列舉身邊具有已學(xué)過(guò)的幾何結(jié)構(gòu)特征的物體,并說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

 。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。

  1.有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明,如圖)

  2.棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?

  3.課本P8,習(xí)題1.1A組第1題。

  4.圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

  5.棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

  四、鞏固深化

  練習(xí):課本P7練習(xí)1、2(1)(2)

  課本P8習(xí)題1.1第2、3、4題

  五、歸納整理

  由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容

  六、布置作業(yè)

  課本P8練習(xí)題1.1B組第1題

  課外練習(xí)課本P8習(xí)題1.1B組第2題

  1.2.1空間幾何體的三視圖(1課時(shí))

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能

 。1)掌握畫三視圖的基本技能

 。2)豐富學(xué)生的空間想象力

  2.過(guò)程與方法

  主要通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。

  3.情感態(tài)度與價(jià)值觀

  (1)提高學(xué)生空間想象力

 。2)體會(huì)三視圖的作用

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):畫出簡(jiǎn)單組合體的三視圖

  難點(diǎn):識(shí)別三視圖所表示的空間幾何體

  三、學(xué)法與教學(xué)用具

  1.學(xué)法:觀察、動(dòng)手實(shí)踐、討論、類比

  2.教學(xué)用具:實(shí)物模型、三角板

  四、教學(xué)思路

  (一)創(chuàng)設(shè)情景,揭開(kāi)課題

  “橫看成嶺側(cè)看成峰”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。

  在初中,我們已經(jīng)學(xué)習(xí)了正方體、長(zhǎng)方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

 。ǘ⿲(shí)踐動(dòng)手作圖

  1.講臺(tái)上放球、長(zhǎng)方體實(shí)物,要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論;

  2.教師引導(dǎo)學(xué)生用類比方法畫出簡(jiǎn)單組合體的三視圖

  (1)畫出球放在長(zhǎng)方體上的三視圖

 。2)畫出礦泉水瓶(實(shí)物放在桌面上)的三視圖

  學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。

  作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識(shí)了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖。

  3.三視圖與幾何體之間的相互轉(zhuǎn)化。

 。1)投影出示圖片(課本P10,圖1.2-3)

  請(qǐng)同學(xué)們思考圖中的三視圖表示的幾何體是什么?

 。2)你能畫出圓臺(tái)的三視圖嗎?

 。3)三視圖對(duì)于認(rèn)識(shí)空間幾何體有何作用?你有何體會(huì)?

  教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對(duì)上述問(wèn)題的看法。

  4.請(qǐng)同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。

 。ㄈ╈柟叹毩(xí)

  課本P12練習(xí)1、2P18習(xí)題1.2A組1

 。ㄋ模w納整理

  請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

 。ㄎ澹┱n外練習(xí)

  1.自己動(dòng)手制作一個(gè)底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。

  2.自己制作一個(gè)上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺(tái)模型,并畫出它的三視圖。

  1.2.2空間幾何體的直觀圖(1課時(shí))

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能

  (1)掌握斜二測(cè)畫法畫水平設(shè)置的平面圖形的直觀圖。

  (2)采用對(duì)比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。

  2.過(guò)程與方法

  學(xué)生通過(guò)觀察和類比,利用斜二測(cè)畫法畫出空間幾何體的直觀圖。

  3.情感態(tài)度與價(jià)值觀

  (1)提高空間想象力與直觀感受。

  (2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。

 。3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn)、難點(diǎn):用斜二測(cè)畫法畫空間幾何值的直觀圖。

  三、學(xué)法與教學(xué)用具

  1.學(xué)法:學(xué)生通過(guò)作圖感受圖形直觀感,并自然采用斜二測(cè)畫法畫空間幾何體的過(guò)程。

  2.教學(xué)用具:三角板、圓規(guī)

  四、教學(xué)思路

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1.我們都學(xué)過(guò)畫畫,這節(jié)課我們畫一物體:圓柱

  把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫。

  2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。

  (二)研探新知

  1.例1,用斜二測(cè)畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評(píng)。

  畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測(cè)畫法的步驟。

  練習(xí)反饋

  根據(jù)斜二測(cè)畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。

  2.例2,用斜二測(cè)畫法畫水平放置的圓的直觀圖

  教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。

  教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。

  3.探求空間幾何體的直觀圖的畫法

 。1)例3,用斜二測(cè)畫法畫長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體ABCD-A’B’C’D’的直觀圖。

  教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。

 。2)投影出示幾何體的三視圖、課本P15圖1.2-9,請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。

  4.平行投影與中心投影

  投影出示課本P17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。

  5.鞏固練習(xí),課本P16練習(xí)1(1),2,3,4

  三、歸納整理

  學(xué)生回顧斜二測(cè)畫法的關(guān)鍵與步驟

  四、作業(yè)

  1.書畫作業(yè),課本P17練習(xí)第5題

  2.課外思考課本P16,探究(1)(2)

高中必修數(shù)學(xué)教案2

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  熟悉兩角和與差的正、余公式的推導(dǎo)過(guò)程,提高邏輯推理能力。

  掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問(wèn)題。

  教學(xué)重難點(diǎn)

  熟練兩角和與差的正、余弦公式的'正用、逆用和變用技巧。

  教學(xué)過(guò)程

  復(fù)習(xí)

  兩角差的余弦公式

  用- B代替B看看有什么結(jié)果?

高中必修數(shù)學(xué)教案3

  【教學(xué)目標(biāo)】

  1.會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

  2.能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。

  3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

  【教學(xué)重難點(diǎn)】

  教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。

  教學(xué)難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

  【教學(xué)過(guò)程】

  1.情景導(dǎo)入

  教師提出問(wèn)題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。

  2.展示目標(biāo)、檢查預(yù)習(xí)

  3、合作探究、交流展示

 。1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說(shuō)出它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?

 。2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

  (3)提出問(wèn)題:請(qǐng)列舉身邊的棱柱并對(duì)它們進(jìn)行分類

 。4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

 。5)讓學(xué)生觀察圓柱,并實(shí)物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。

 。6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

 。7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。

  4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。

 。1)有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明)

 。2)棱柱的任何兩個(gè)平面都可以作為棱柱的底面嗎?

 。3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

 。4)棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

 。5)繞直角三角形某一邊的.幾何體一定是圓錐嗎?

  5、典型例題

  例1:判斷下列語(yǔ)句是否正確。

 、庞幸粋(gè)面是多邊形,其余各面都是三角形的幾何體是棱錐。

 、朴袃蓚(gè)面互相平行,其余各面都是梯形,則此幾何體是棱柱。

  答案 A B

  6、課堂檢測(cè):

  課本P8,習(xí)題1.1 A組第1題。

  7.歸納整理

  由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容

  【板書設(shè)計(jì)】

  一、柱、錐、臺(tái)、球的結(jié)構(gòu)

  二、例題

  例1

  變式1、2

  【作業(yè)布置】

  導(dǎo)學(xué)案課后練習(xí)與提高

  1.1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  課前預(yù)習(xí)學(xué)案

  一、預(yù)習(xí)目標(biāo):

  通過(guò)圖形探究柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  二、預(yù)習(xí)內(nèi)容:

  閱讀教材第2—6頁(yè)內(nèi)容,然后填空

  (1)多面體的概念: 叫多面體,

  叫多面體的面, 叫多面體的棱,

  叫多面體的頂點(diǎn)。

 、 棱柱:兩個(gè)面 ,其余各面都是 ,并且每相鄰兩個(gè)四邊形的公共邊都 ,這些面圍成的幾何體叫作棱柱

 、诶忮F:有一個(gè)面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐

 、劾馀_(tái):用一個(gè) 棱錐底面的平面去截棱錐, ,叫作棱臺(tái)。

 。2)旋轉(zhuǎn)體的概念: 叫旋轉(zhuǎn)體, 叫旋轉(zhuǎn)體的軸。

  ①圓柱: 所圍成的幾何體叫做圓柱

  ②圓錐: 所圍成的幾何

  體叫做圓錐

 、蹐A臺(tái): 的部分叫圓臺(tái)

  . ④球的定義

  思考:

 。1)試分析多面體與旋轉(zhuǎn)體有何去別

 。2)球面球體有何去別

  (3)圓與球有何去別

  三、提出疑惑

  同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中

  疑惑點(diǎn) 疑惑內(nèi)容

高中必修數(shù)學(xué)教案4

  一、指導(dǎo)思想。

  研究新教材,了解新的信息,更新觀念,探求新的教學(xué)模式,加強(qiáng)教改力度,注重團(tuán)結(jié)協(xié)作,面向全體學(xué)生,因材施教,激發(fā)學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)素質(zhì),全力促進(jìn)教學(xué)效果的提高。

  二、學(xué)生基本情況。

  新的學(xué)期里,本人任教高三10、11班兩個(gè)文科班的數(shù)學(xué)課,這些學(xué)生大部分基礎(chǔ)知識(shí)薄弱,沒(méi)有自主學(xué)習(xí)的習(xí)慣,自制能力差,上課注意力不集中,容易走神,課后獨(dú)立完成作業(yè)能力差,懶惰思想嚴(yán)重,因此整個(gè)高三的復(fù)習(xí)任務(wù)相當(dāng)艱巨。

  三、工作措施。

  1、認(rèn)真學(xué)習(xí)《考試說(shuō)明》,研究高考試題,提高復(fù)習(xí)課的效率。

  《考試說(shuō)明》是命題的依據(jù),備考的依據(jù)。高考試題是《考試說(shuō)明》的具體體現(xiàn)。因此要認(rèn)真研究近年來(lái)的考試試題,從而加深對(duì)《考試說(shuō)明》的理解,及時(shí)把握高考新動(dòng)向,理解高考對(duì)教學(xué)的導(dǎo)向,以利于我們準(zhǔn)確地把握教學(xué)的重、難點(diǎn),有針對(duì)性地選配例題,優(yōu)化教學(xué)設(shè)計(jì),提高我們的復(fù)習(xí)質(zhì)量。

  2、教學(xué)進(jìn)度。

  按照高三數(shù)學(xué)組學(xué)年教學(xué)計(jì)劃進(jìn)行,結(jié)合本班實(shí)際情況,進(jìn)行第一輪高三總復(fù)習(xí),預(yù)計(jì)在2月底3月初完成。配合學(xué)校舉行的月考,并及時(shí)進(jìn)行教學(xué)反思。

  3、了解學(xué)生。

  通過(guò)課堂展示、學(xué)生交流互動(dòng)、批改作業(yè)、評(píng)閱試卷、課堂板書以及課堂上學(xué)生情態(tài)的變化等途徑,深入的了解學(xué)生的情況,及時(shí)的觀察、發(fā)現(xiàn)、捕捉有關(guān)學(xué)生的信息調(diào)節(jié)教法,讓教師的教程度上服務(wù)于學(xué)生。對(duì)于基礎(chǔ)較薄弱的`學(xué)生,應(yīng)多鼓勵(lì)、多指導(dǎo)學(xué)法,增強(qiáng)他們學(xué)下去的信心和勇氣。

  4、精心備課。

  精心的備好每一節(jié)課,努力提高課堂效率,平常多去聽(tīng)同科教師的課,向老教師學(xué)習(xí)經(jīng)驗(yàn)和好的教學(xué)方法,努力提高自己的任教能力。

  5、優(yōu)化練習(xí)。

  提高練習(xí)的有效性:知識(shí)的鞏固,技能的熟練,能力的提高都需要通過(guò)適當(dāng)而有效的練習(xí)才能實(shí)現(xiàn)。練習(xí)題要精選,題量要適度,注意題目的典型性和層次性,以適應(yīng)不同層次的學(xué)生;對(duì)練習(xí)要全批全改,做好學(xué)生的錯(cuò)題統(tǒng)計(jì),對(duì)于錯(cuò)的較多的題目,找出錯(cuò)的原因。

  練習(xí)的講評(píng)是高三數(shù)學(xué)教學(xué)的一個(gè)重要的環(huán)節(jié),不該講的就不講,該點(diǎn)撥的要點(diǎn)撥,該講的內(nèi)容一定要講透;對(duì)于典型問(wèn)題,要讓學(xué)生展示講解,充分暴露學(xué)生的思維過(guò)程,加強(qiáng)教學(xué)的針對(duì)性。多做練習(xí),注重綜合。選取“題型小、方法巧、運(yùn)用活、覆蓋寬”的題目訓(xùn)練學(xué)生的應(yīng)變能力。

  6、注重學(xué)習(xí)方法、數(shù)學(xué)方法的指導(dǎo)。

  我們?cè)趶?fù)習(xí)中要加強(qiáng)數(shù)學(xué)思想方法的復(fù)習(xí):如轉(zhuǎn)化與化歸的思想、函數(shù)與方程的思想、分類與整合的思想、數(shù)形結(jié)合的思想、特殊與一般的思想、或然與必然的思想等。以及配方法、換元法、待定系數(shù)法、反證法、數(shù)學(xué)歸納法、解析法等數(shù)學(xué)基本方法都要有意識(shí)地根據(jù)學(xué)生學(xué)習(xí)實(shí)際予以復(fù)習(xí)及落實(shí)。

  針對(duì)學(xué)生的具體情況,進(jìn)行復(fù)習(xí)的學(xué)法指導(dǎo),使學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,提高復(fù)習(xí)的效率。如:要求學(xué)生建立錯(cuò)題本,尤其是考后錯(cuò)題,讓學(xué)生養(yǎng)成反思的習(xí)慣;養(yǎng)成學(xué)生善于結(jié)合圖形直觀思維的習(xí)慣;養(yǎng)成學(xué)生表述規(guī)范,按照解答題的必要步驟和書寫格式答題的習(xí)慣等。

  7、注意心理調(diào)節(jié)和應(yīng)試技巧的訓(xùn)練。

  應(yīng)試的技巧和心理的訓(xùn)練要三高三的第一節(jié)課開(kāi)始,要貫穿于整個(gè)高三的復(fù)習(xí)課,良好的心理素質(zhì)是高考成功的一個(gè)重要環(huán)節(jié)。我們數(shù)學(xué)老師在講課時(shí)尤其是考試中主要鍛煉學(xué)生的心理素質(zhì),我們教育學(xué)生要以平常心來(lái)對(duì)待每一次考試。

高中必修數(shù)學(xué)教案5

  1.1.1 任意角

  教學(xué)目標(biāo)

 。ㄒ唬 知識(shí)與技能目標(biāo)

  理解任意角的概念(包括正角、負(fù)角、零角) 與區(qū)間角的概念.

  (二) 過(guò)程與能力目標(biāo)

  會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.

  (三) 情感與態(tài)度目標(biāo)

  1. 提高學(xué)生的推理能力;

  2.培養(yǎng)學(xué)生應(yīng)用意識(shí). 教學(xué)重點(diǎn)

  任意角概念的理解;區(qū)間角的集合的書寫. 教學(xué)難點(diǎn)

  終邊相同角的集合的表示;區(qū)間角的集合的書寫.

  教學(xué)過(guò)程

  一、引入:

  1.回顧角的定義

 、俳堑牡谝环N定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角.

 、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.

  二、新課:

  1.角的有關(guān)概念:

 、俳堑亩x:

  角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.

 、诮堑拿Q:

  ③角的分類: A

  正角:按逆時(shí)針?lè)较蛐D(zhuǎn)形成的角 零角:射線沒(méi)有任何旋轉(zhuǎn)形成的角

  負(fù)角:按順時(shí)針?lè)较蛐D(zhuǎn)形成的角

 、茏⒁猓

 、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡(jiǎn)化成“α ”;

 、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;

  ⑶角的概念經(jīng)過(guò)推廣后,已包括正角、負(fù)角和零角.

 、菥毩(xí):請(qǐng)說(shuō)出角α、β、γ各是多少度?

  2.象限角的概念:

 、俣x:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說(shuō)這個(gè)角是第幾象限角.

  例1.在直角坐標(biāo)系中,作出下列各角,并指出它們是第幾象限的角.

  ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

  答:分別為1、2、3、4、1、2象限角.

  3.探究:教材P3面

  終邊相同的角的表示:

  所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個(gè)集合S={ β | β = α +

  k·360° ,

  k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個(gè)周角的和. 注意: ⑴ k∈Z

 、 α是任一角;

 、 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無(wú)限個(gè),它們相差

  360°的整數(shù)倍;

 、 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.

  例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.

 、牛120°;

 、640°;

 、牵950°12’.

  答:⑴240°,第三象限角;

 、280°,第四象限角;

 、129°48’,第二象限角;

  例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.

  例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來(lái).

  4.課堂小結(jié)

 、俳堑亩x;

 、诮堑姆诸悾

  正角:按逆時(shí)針?lè)较蛐D(zhuǎn)形成的角 零角:射線沒(méi)有任何旋轉(zhuǎn)形成的角

  負(fù)角:按順時(shí)針?lè)较蛐D(zhuǎn)形成的角

 、巯笙藿牵

 、芙K邊相同的角的表示法.

  5.課后作業(yè):

 、匍喿x教材P2-P5;

 、诮滩腜5練習(xí)第1-5題;

  ③教材P.9習(xí)題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,

  解:??角屬于第三象限,

  ? k·360°+180°<α<k·360°+270°(k∈Z)

  因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)

  故2α是第一、二象限或終邊在y軸的非負(fù)半軸上的角. 又k·180°+90°<

  各是第幾象限角?

 。糼·180°+135°(k∈Z) .

 。糿·360°+135°(n∈Z) ,

  當(dāng)k為偶數(shù)時(shí),令k=2n(n∈Z),則n·360°+90°<此時(shí),

  屬于第二象限角

 。糿·360°+315°(n∈Z) ,

  當(dāng)k為奇數(shù)時(shí),令k=2n+1 (n∈Z),則n·360°+270°<此時(shí),

  屬于第四象限角

  因此

  屬于第二或第四象限角.

  1.1.2弧度制

 。ㄒ唬

  教學(xué)目標(biāo)

 。ǘ 知識(shí)與技能目標(biāo)

  理解弧度的意義;了解角的'集合與實(shí)數(shù)集R之間的可建立起一一對(duì)應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).

 。ㄈ 過(guò)程與能力目標(biāo)

  能正確地進(jìn)行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長(zhǎng)公式及扇形的面積公式,并能運(yùn)用公式解決一些實(shí)際問(wèn)題

 。ㄋ模 情感與態(tài)度目標(biāo)

  通過(guò)新的度量角的單位制(弧度制)的引進(jìn),培養(yǎng)學(xué)生求異創(chuàng)新的精神;通過(guò)對(duì)弧度制與角度制下弧長(zhǎng)公式、扇形面積公式的對(duì)比,讓學(xué)生感受弧長(zhǎng)及扇形面積公式在弧度制下的簡(jiǎn)潔美. 教學(xué)重點(diǎn)

  弧度的概念.弧長(zhǎng)公式及扇形的面積公式的推導(dǎo)與證明. 教學(xué)難點(diǎn)

  “角度制”與“弧度制”的區(qū)別與聯(lián)系.

  教學(xué)過(guò)程

  一、復(fù)習(xí)角度制:

  初中所學(xué)的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來(lái)度量角的制度叫做角度制.

  二、新課:

  1.引 入:

  由角度制的定義我們知道,角度是用來(lái)度量角的, 角度制的度量是60進(jìn)制的,運(yùn)用起來(lái)不太方便.在數(shù)學(xué)和其他許多科學(xué)研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?

  2.定 義

  我們規(guī)定,長(zhǎng)度等于半徑的弧所對(duì)的圓心角叫做1弧度的角;用弧度來(lái)度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實(shí)際運(yùn)算中,常常將rad單位省略.

  3.思考:

 。1)一定大小的圓心角?所對(duì)應(yīng)的弧長(zhǎng)與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?

  (2)引導(dǎo)學(xué)生完成P6的探究并歸納: 弧度制的性質(zhì):

 、侔雸A所對(duì)的圓心角為

 、谡麍A所對(duì)的圓心角為

 、壅堑幕《葦(shù)是一個(gè)正數(shù).

 、茇(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù).

 、萘憬堑幕《葦(shù)是零.

  ⑥角α的弧度數(shù)的絕對(duì)值|α|= .

  4.角度與弧度之間的轉(zhuǎn)換:

  ①將角度化為弧度:

 、趯⒒《然癁榻嵌龋

  5.常規(guī)寫法:

 、 用弧度數(shù)表示角時(shí),常常把弧度數(shù)寫成多少π 的形式, 不必寫成小數(shù).

  ② 弧度與角度不能混用.

  弧長(zhǎng)等于弧所對(duì)應(yīng)的圓心角(的弧度數(shù))的絕對(duì)值與半徑的積.

  例1.把67°30’化成弧度.

  例2.把? rad化成度.

  例3.計(jì)算:

  (1)sin4

  (2)tan1.5.

  8.課后作業(yè):

 、匍喿x教材P6 –P8;

 、诮滩腜9練習(xí)第1、2、3、6題;

 、劢滩腜10面7、8題及B2、3題.

【高中必修數(shù)學(xué)教案】相關(guān)文章:

高中必修數(shù)學(xué)教案01-07

高中必修4數(shù)學(xué)教案03-13

高中必修數(shù)學(xué)教案(5篇)01-09

高中物理必修一教案11-20

高中必修一化學(xué)教案11-06

高中化學(xué)必修一教案11-08

高中化學(xué)必修1教案12-16

高中化學(xué)必修2教案12-16

高中語(yǔ)文必修五背誦11-07