国产真实乱子伦精品,国产精品100页,美女网站色免费,国产白嫩美女免费观看,欧美精品亚洲,欧美韩国xxx,欧美性猛交xxxxxxxx软件

高中數(shù)學教案

時間:2024-06-24 13:35:17 高中數(shù)學教案 我要投稿

高中數(shù)學教案15篇[精選]

  作為一名人民教師,時常需要用到教案,通過教案準備可以更好地根據(jù)具體情況對教學進程做適當?shù)谋匾恼{(diào)整。那要怎么寫好教案呢?下面是小編為大家整理的高中數(shù)學教案,希望能夠幫助到大家。

高中數(shù)學教案15篇[精選]

高中數(shù)學教案1

  一、教學目標

  知識與技能:

  理解任意角的概念(包括正角、負角、零角)與區(qū)間角的概念。

  過程與方法:

  會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。

  情感態(tài)度與價值觀:

  1、提高學生的推理能力;

  2、培養(yǎng)學生應用意識。

  二、教學重點、難點:

  教學重點:

  任意角概念的理解;區(qū)間角的集合的書寫。

  教學難點:

  終邊相同角的集合的表示;區(qū)間角的集合的書寫。

  三、教學過程

  (一)導入新課

  1、回顧角的定義

 、俳堑牡谝环N定義是有公共端點的兩條射線組成的圖形叫做角。

 、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

 。ǘ┙虒W新課

  1、角的有關(guān)概念:

  ①角的定義:

  角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的.圖形。

  ②角的名稱:

  注意:

 、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡化成“α ”;

 、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;

 、墙堑母拍罱(jīng)過推廣后,已包括正角、負角和零角。

 、菥毩暎赫堈f出角α、β、γ各是多少度?

  2、象限角的概念:

 、俣x:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。

  例1、如圖⑴⑵中的角分別屬于第幾象限角?

高中數(shù)學教案2

  教學目標:

  (1)理解子集、真子集、補集、兩個集合相等概念;

  (2)了解全集、空集的意義。

  (3)掌握有關(guān)子集、全集、補集的符號及表示方法,會用它們正確表示一些簡單的集合,培養(yǎng)學生的符號表示的能力;

  (4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;

  (5)能判斷兩集合間的包含、相等關(guān)系,并會用符號及圖形(文氏圖)準確地表示出來,培養(yǎng)學生的數(shù)學結(jié)合的數(shù)學思想;

  (6)培養(yǎng)學生用集合的觀點分析問題、解決問題的能力。

  教學重點:

  子集、補集的概念

  教學難點:

  弄清元素與子集、屬于與包含之間的區(qū)別

  教學用具:

  幻燈機

  教學過程設(shè)計

  (一)導入新課

  上節(jié)課我們學習了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識。

  【提出問題】(投影打出)

  已知xx,xx,xx,問:

  1、哪些集合表示方法是列舉法。

  2、哪些集合表示方法是描述法。

  3、將集M、集從集P用圖示法表示。

  4、分別說出各集合中的元素。

  5、將每個集合中的元素與該集合的關(guān)系用符號表示出來、將集N中元素3與集M的關(guān)系用符號表示出來。

  6、集M中元素與集N有何關(guān)系、集M中元素與集P有何關(guān)系。

  【找學生回答】

  1、集合M和集合N;(口答)

  2、集合P;(口答)

  3、(筆練結(jié)合板演)

  4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)

  5、xx,xx,xx,xx,xx,xx,xx,xx(筆練結(jié)合板演)

  6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)

  【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關(guān)系,而具有這種關(guān)系的兩個集合在今后學習中會經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個集合間關(guān)系的問題、

  (二)新授知識

  1、子集

  (1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。

  記作:xx讀作:A包含于B或B包含A

  當集合A不包含于集合B,或集合B不包含集合A時,則記作:AxxB或BxxA、

  性質(zhì):①xx(任何一個集合是它本身的子集)

 、趚x(空集是任何集合的子集)

  【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?

  【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合。

  因為B的子集也包括它本身,而這個子集是由B的全體元素組成的空集也是B的子集,而這個集合中并不含有B中的元素、由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的。

  (2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。

  例:xx,可見,集合xx,是指A、B的所有元素完全相同。

  (3)真子集:對于兩個集合A與B,如果xx,并且xx,我們就說集合A是集合B的真子集,記作:xx(或xx),讀作A真包含于B或B真包含A。

  【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集!

  集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個圓的內(nèi)部分別表示集合A,B。

  【提問】

  (1)xx寫出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。

  (2)xx判斷下列寫法是否正確

  ①xxAxx②xxAxx③xx④AxxA

  性質(zhì):

  (1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,則xxA;

  (2)如果xx,xx,則xx。

  例1xx寫出集合xx的所有子集,并指出其中哪些是它的真子集、

  解:集合xx的'所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。

  【注意】(1)子集與真子集符號的方向。

  (2)易混符號

 、佟皒x”與“xx”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如xxR,{1}xx{1,2,3}

 、趝0}與xx:{0}是含有一個元素0的集合,xx是不含任何元素的集合。

  如:xx{0}。不能寫成xx={0},xx∈{0}

  例2xx見教材P8(解略)

  例3xx判斷下列說法是否正確,如果不正確,請加以改正、

  (1)xx表示空集;

  (2)空集是任何集合的真子集;

  (3)xx不是xx;

  (4)xx的所有子集是xx;

  (5)如果xx且xx,那么B必是A的真子集;

  (6)xx與xx不能同時成立、

  解:(1)xx不表示空集,它表示以空集為元素的集合,所以(1)不正確;

  (2)不正確、空集是任何非空集合的真子集;

  (3)不正確、xx與xx表示同一集合;

  (4)不正確、xx的所有子集是xx;

  (5)正確

  (6)不正確、當xx時,xx與xx能同時成立、

  例4xx用適當?shù)姆?xx,xx)填空:

  (1)xx;xx;xx;

  (2)xx;xx;

  (3)xx;

  (4)設(shè)xx,xx,xx,則AxxBxxC、

  解:(1)0xx0xx;

  (2)xx=xx,xx;

  (3)xx,xx∴xx;

  (4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C、

  【練習】教材P9

  用適當?shù)姆?xx,xx)填空:

  (1)xx;xx(5)xx;

  (2)xx;xx(6)xx;

  (3)xx;xx(7)xx;

  (4)xx;xx(8)xx、

  解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、

  提問:見教材P9例子

  (二)xx全集與補集

  1、補集:一般地,設(shè)S是一個集合,A是S的一個子集(即xx),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作xx,即

  、

  A在S中的補集xx可用右圖中陰影部分表示、

  性質(zhì):xxS(xxSA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},則xxSA={2,4,6};

  (2)若A={0},則xxNA=N;

  (3)xxRQ是無理數(shù)集。

  2、全集:

  如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用xx表示。

  注:xx是對于給定的全集xx而言的,當全集不同時,補集也會不同。

  例如:若xx,當xx時,xx;當xx時,則xx。

  例5xx設(shè)全集xx,xx,xx,判斷xx與xx之間的關(guān)系。

  解:

  練習:見教材P10練習

  1、填空:

  xx,xx,那么xx,xx。

  解:xx,

  2、填空:

  (1)如果全集xx,那么N的補集xx;

  (2)如果全集,xx,那么xx的補集xx(xx)=xx、

  解:(1)xx;(2)xx。

  (三)小結(jié):本節(jié)課學習了以下內(nèi)容:

  1、五個概念(子集、集合相等、真子集、補集、全集,其中子集、補集為重點)

  2、五條性質(zhì)

  (1)空集是任何集合的子集。ΦxxA

  (2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)

  (3)任何一個集合是它本身的子集。

  (4)如果xx,xx,則xx、

  (5)xxS(xxSA)=A

  3、兩組易混符號:(1)“xx”與“xx”:(2){0}與

  (四)課后作業(yè):見教材P10習題1、2

高中數(shù)學教案3

  教學目標

 。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

  (2)理解直線與二元一次方程的關(guān)系及其證明

 。3)培養(yǎng)學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統(tǒng)一的觀點.

  教學重點、難點:直線方程的一般式.直線與二元一次方程 ( 、 不同時為0)的對應關(guān)系及其證明.

  教學用具:計算機

  教學方法:啟發(fā)引導法,討論法

  教學過程

  下面給出教學實施過程設(shè)計的簡要思路:

  教學設(shè)計思路

  (一)引入的設(shè)計

  前邊學習了如何根據(jù)所給條件求出直線方程的方法,看下面問題:

  問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是 ,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.

  肯定學生回答,并糾正學生中不規(guī)范的表述.再看一個問題:

  問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是 (或其它形式),也屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.

  肯定學生回答后強調(diào)“也是二元一次方程,都是因為未知數(shù)有兩個,它們的最高次數(shù)為一次”.

  啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

  學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:

  【問題1】“任意直線的方程都是二元一次方程嗎?”

 。ǘ┍竟(jié)主體內(nèi)容教學的設(shè)計

  這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

  學生或獨立研究,或合作研究,教師巡視指導.

  經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:

  按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

  當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

  當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

  學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

  平面直角坐標系中直線 上點的坐標形式,與其它直線上點的坐標形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的.解的形式,因此把它看成形如 的二元一次方程是合理的.

  綜合兩種情況,我們得出如下結(jié)論:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程.

  至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準確地說應該是“要么形如 這樣,要么形如 這樣的方程”.

  同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

  學生們不難得出:二者可以概括為統(tǒng)一的形式.

  這樣上邊的結(jié)論可以表述如下:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.

  啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?

  【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結(jié)論.那么如何研究呢?

  師生共同討論,評價不同思路,達成共識:

  回顧上邊解決問題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數(shù) 是否為0恰好對應斜率 是否存在,即

 。1)當 時,方程可化為

  這是表示斜率為 、在 軸上的截距為 的直線.

  (2)當 時,由于 、 不同時為0,必有 ,方程可化為

  這表示一條與 軸垂直的直線.

  因此,得到結(jié)論:

  在平面直角坐標系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.

  為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.

  【動畫演示】

  演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線.

  至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關(guān)系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉(zhuǎn)化關(guān)系.

  (三)練習鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計

  略

高中數(shù)學教案4

 。ㄒ唬┙虒W具準備

  直尺,投影儀.

 。ǘ┙虒W目標

  1.掌握,的定義域、值域、最值、單調(diào)區(qū)間.

  2.會求含有、的三角式的定義域.

  (三)教學過程

  1.設(shè)置情境

  研究函數(shù)就是要討論一些性質(zhì),,是函數(shù),我們當然也要探討它的一些屬性.本節(jié)課,我們就來研究正弦函數(shù)、余弦函數(shù)的最基本的兩條性質(zhì).

  2.探索研究

  師:同學們回想一下,研究一個函數(shù)常要研究它的哪些性質(zhì)?

  生:定義域、值域,單調(diào)性、奇偶性、等等.

  師:很好,今天我們就來探索,兩條最基本的性質(zhì)定義域、值域.(板書課題正、余弦函數(shù)的定義域、值域.)

  師:請同學看投影,大家仔細觀察一下正弦、余弦曲線的圖像.

  師:請同學思考以下幾個問題:

 。1)正弦、余弦函數(shù)的定義域是什么?

  (2)正弦、余弦函數(shù)的值域是什么?

  (3)他們最值情況如何?

  (4)他們的正負值區(qū)間如何分?

 。5)的解集如何?

  師生一起歸納得出:

 。1)正弦函數(shù)、余弦函數(shù)的定義域都是.

 。2)正弦函數(shù)、余弦函數(shù)的值域都是即,,稱為正弦函數(shù)、余弦函數(shù)的有界性.

 。3)取最大值、最小值情況:

  正弦函數(shù),當時,()函數(shù)值取最大值1,當時,()函數(shù)值取最小值-1.

  余弦函數(shù),當,()時,函數(shù)值取最大值1,當,()時,函數(shù)值取最小值-1.

 。4)正負值區(qū)間:

  ()

 。5)零點:()

 。ǎ

  3.例題分析

  【例1】求下列函數(shù)的定義域、值域:

 。1);(2);(3).

  解:(1),

 。2)由()

  又∵,∴

  ∴定義域為(),值域為.

 。3)由(),又由

  ∴

  ∴定義域為(),值域為.

  指出:求值域應注意用到或有界性的條件.

  【例2】求下列函數(shù)的最大值,并求出最大值時的集合:

  (1),;(2),;

 。3)(4).

  解:(1)當,即()時,取得最大值

  ∴函數(shù)的最大值為2,取最大值時的集合為.

 。2)當時,即()時,取得最大值.

  ∴函數(shù)的最大值為1,取最大值時的集合為.

 。3)若,,此時函數(shù)為常數(shù)函數(shù).

  若時,∴時,即()時,函數(shù)取最大值,

  ∴時函數(shù)的最大值為,取最大值時的集合為.

 。4)若,則當時,函數(shù)取得最大值.

  若,則,此時函數(shù)為常數(shù)函數(shù).

  若,當時,函數(shù)取得最大值.

  ∴當時,函數(shù)取得最大值,取得最大值時的集合為;當時,函數(shù)取得最大值,取得最大值時的集合為,當時,函數(shù)無最大值.

  指出:對于含參數(shù)的.最大值或最小值問題,要對或的系數(shù)進行討論.

  思考:此例若改為求最小值,結(jié)果如何?

  【例3】要使下列各式有意義應滿足什么條件?

 。1);(2).

  解:(1)由,

  ∴當時,式子有意義.

 。2)由,即

  ∴當時,式子有意義.

  4.演練反饋(投影)

 。1)函數(shù),的簡圖是()

 。2)函數(shù)的最大值和最小值分別為()

  A.2,-2 B.4,0 C.2,0 D.4,-4

 。3)函數(shù)的最小值是()

  A.B.-2 C.D.

 。4)如果與同時有意義,則的取值范圍應為()

  A.B.C.D.或

 。5)與都是增函數(shù)的區(qū)間是()

  A.,B.,

  C.,D.,

 。6)函數(shù)的定義域________,值域________,時的集合為_________.

  參考答案:1.B 2.B 3.A 4.C 5.D

  6.;;

  5.總結(jié)提煉

 。1),的定義域均為.

 。2)、的值域都是

 。3)有界性:

  (4)最大值或最小值都存在,且取得極值的集合為無限集.

 。5)正負敬意及零點,從圖上一目了然.

 。6)單調(diào)區(qū)間也可以從圖上看出.

 。ㄋ模┌鍟O(shè)計

  1.定義域

  2.值域

  3.最值

  4.正負區(qū)間

  5.零點

  例1

  例2

  例3

  課堂練習

  課后思考題:求函數(shù)的最大值和最小值及取最值時的集合

  提示:

高中數(shù)學教案5

  教學目標

  (1)使學生正確理解組合的意義,正確區(qū)分排列、組合問題;

  (2)使學生掌握組合數(shù)的計算公式;

  (3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;

  教學重點難點

  重點是組合的定義、組合數(shù)及組合數(shù)的公式;

  難點是解組合的應用題.

  教學過程設(shè)計

  (-)導入新課

  (教師活動)提出下列思考問題,打出字幕.

  [字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

  (學生活動)討論并回答.

  答案提示:(1)排列;(2)組合.

  [評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

  設(shè)計意圖:組合與排列所研究的問題幾乎是平行的上面設(shè)計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.

  (二)新課講授

  [提出問題 創(chuàng)設(shè)情境]

  (教師活動)指導學生帶著問題閱讀課文.

  [字幕]1.排列的定義是什么?

  2.舉例說明一個組合是什么?

  3.一個組合與一個排列有何區(qū)別?

  (學生活動)閱讀回答.

  (教師活動)對照課文,逐一評析.

  設(shè)計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應新的環(huán)境.

  【歸納概括 建立新知】

  (教師活動)承接上述問題的回答,展示下面知識.

  [字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.

  組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .

  [評述]區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

  (學生活動)傾聽、思索、記錄.

  (教師活動)提出思考問題.

  [投影] 與 的關(guān)系如何?

  (師生活動)共同探討.求從 個不同元素中取出 個元素的排列數(shù) ,可分為以下兩步:

  第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;

  第2步,求每一個組合中 個元素的全排列數(shù)為 .根據(jù)分步計數(shù)原理,得到

  [字幕]公式1:

  公式2:

  (學生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.

  設(shè)計意圖:本著以認識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去.

  【例題示范 探求方法】

  (教師活動)打出字幕,給出示范,指導訓練.

  [字幕]例1 列舉從4個元素 中任取2個元素的`所有組合.

  例2 計算:(1) ;(2) .

  (學生活動)板演、示范.

  (教師活動)講評并指出用兩種方法計算例2的第2小題.

  [字幕]例3 已知 ,求 的所有值.

  (學生活動)思考分析.

  解 首先,根據(jù)組合的定義,有

 、

  其次,由原不等式轉(zhuǎn)化為

  即

  解得 ②

  綜合①、②,得 ,即

  [點評]這是組合數(shù)公式的應用,關(guān)鍵是公式的選擇.

  設(shè)計意圖:例題教學循序漸進,讓學生鞏固知識,強化公式的應用,從而培養(yǎng)學生的綜合分析能力.

  【反饋練習 學會應用】

  (教師活動)給出練習,學生解答,教師點評.

  [課堂練習]課本P99練習第2,5,6題.

  [補充練習]

  [字幕]1.計算:

  2.已知 ,求 .

  (學生活動)板演、解答.

  設(shè)計意圖:課堂教學體現(xiàn)以學生為本,讓全體學生參與訓練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應用.

  (三)小結(jié)

  (師生活動)共同小結(jié).

  本節(jié)主要內(nèi)容有

  1.組合概念.

  2.組合數(shù)計算的兩個公式.

  (四)布置作業(yè)

  1.課本作業(yè):習題10 3第1(1)、(4),3題.

  2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數(shù)學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?

  3.研究性題:

  在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?

  (五)課后點評

  在學習了排列知識的基礎(chǔ)上,本節(jié)課引進了組合概念,并推導出組合數(shù)公式,同時調(diào)控進行訓練,從而培養(yǎng)學生分析問題、解決問題的能力.

高中數(shù)學教案6

  1.1.1 任意角

  教學目標

 。ㄒ唬 知識與技能目標

  理解任意角的概念(包括正角、負角、零角) 與區(qū)間角的概念.

 。ǘ 過程與能力目標

  會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.

 。ㄈ 情感與態(tài)度目標

  1. 提高學生的推理能力;

  2.培養(yǎng)學生應用意識. 教學重點

  任意角概念的理解;區(qū)間角的集合的書寫. 教學難點

  終邊相同角的集合的表示;區(qū)間角的集合的書寫.

  教學過程

  一、引入:

  1.回顧角的定義

  ①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角.

 、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形.

  二、新課:

  1.角的有關(guān)概念:

  ①角的定義:

  角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形.

 、诮堑拿Q:

 、劢堑姆诸悾 A

  正角:按逆時針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角

  負角:按順時針方向旋轉(zhuǎn)形成的角

 、茏⒁猓

  ⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;

  ⑵零角的終邊與始邊重合,如果α是零角α =0°;

  ⑶角的概念經(jīng)過推廣后,已包括正角、負角和零角.

 、菥毩暎赫堈f出角α、β、γ各是多少度?

  2.象限角的概念:

 、俣x:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角.

  例1.在直角坐標系中,作出下列各角,并指出它們是第幾象限的角.

 、 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

  答:分別為1、2、3、4、1、2象限角.

  3.探究:教材P3面

  終邊相同的角的表示:

  所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個集合S={ β | β = α +

  k·360° ,

  k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個周角的和. 注意: ⑴ k∈Z

  ⑵ α是任一角;

 、 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個,它們相差

  360°的整數(shù)倍;

  ⑷ 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.

  例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.

  ⑴-120°;

 、640°;

 、牵950°12’.

  答:⑴240°,第三象限角;

 、280°,第四象限角;

 、129°48’,第二象限角;

  例4.寫出終邊在y軸上的'角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.

  例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.

  4.課堂小結(jié)

 、俳堑亩x;

 、诮堑姆诸悾

  正角:按逆時針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角

  負角:按順時針方向旋轉(zhuǎn)形成的角

  ③象限角;

 、芙K邊相同的角的表示法.

  5.課后作業(yè):

 、匍喿x教材P2-P5;

  ②教材P5練習第1-5題;

  ③教材P.9習題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,

  解:??角屬于第三象限,

  ? k·360°+180°<α<k·360°+270°(k∈Z)

  因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)

  故2α是第一、二象限或終邊在y軸的非負半軸上的角. 又k·180°+90°<

  各是第幾象限角?

  <k·180°+135°(k∈Z) .

 。糿·360°+135°(n∈Z) ,

  當k為偶數(shù)時,令k=2n(n∈Z),則n·360°+90°<此時,

  屬于第二象限角

 。糿·360°+315°(n∈Z) ,

  當k為奇數(shù)時,令k=2n+1 (n∈Z),則n·360°+270°<此時,

  屬于第四象限角

  因此

  屬于第二或第四象限角.

  1.1.2弧度制

 。ㄒ唬

  教學目標

  (二) 知識與技能目標

  理解弧度的意義;了解角的集合與實數(shù)集R之間的可建立起一一對應的關(guān)系;熟記特殊角的弧度數(shù).

  (三) 過程與能力目標

  能正確地進行弧度與角度之間的換算,能推導弧度制下的弧長公式及扇形的面積公式,并能運用公式解決一些實際問題

 。ㄋ模 情感與態(tài)度目標

  通過新的度量角的單位制(弧度制)的引進,培養(yǎng)學生求異創(chuàng)新的精神;通過對弧度制與角度制下弧長公式、扇形面積公式的對比,讓學生感受弧長及扇形面積公式在弧度制下的簡潔美. 教學重點

  弧度的概念.弧長公式及扇形的面積公式的推導與證明. 教學難點

  “角度制”與“弧度制”的區(qū)別與聯(lián)系.

  教學過程

  一、復習角度制:

  初中所學的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.

  二、新課:

  1.引 入:

  由角度制的定義我們知道,角度是用來度量角的, 角度制的度量是60進制的,運用起來不太方便.在數(shù)學和其他許多科學研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?

  2.定 義

  我們規(guī)定,長度等于半徑的弧所對的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實際運算中,常常將rad單位省略.

  3.思考:

 。1)一定大小的圓心角?所對應的弧長與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?

 。2)引導學生完成P6的探究并歸納: 弧度制的性質(zhì):

 、侔雸A所對的圓心角為

 、谡麍A所對的圓心角為

  ③正角的弧度數(shù)是一個正數(shù).

 、茇摻堑幕《葦(shù)是一個負數(shù).

 、萘憬堑幕《葦(shù)是零.

 、藿铅恋幕《葦(shù)的絕對值|α|= .

  4.角度與弧度之間的轉(zhuǎn)換:

 、賹⒔嵌然癁榛《龋

 、趯⒒《然癁榻嵌龋

  5.常規(guī)寫法:

 、 用弧度數(shù)表示角時,常常把弧度數(shù)寫成多少π 的形式, 不必寫成小數(shù).

 、 弧度與角度不能混用.

  弧長等于弧所對應的圓心角(的弧度數(shù))的絕對值與半徑的積.

  例1.把67°30’化成弧度.

  例2.把? rad化成度.

  例3.計算:

  (1)sin4

  (2)tan1.5.

  8.課后作業(yè):

 、匍喿x教材P6 –P8;

 、诮滩腜9練習第1、2、3、6題;

 、劢滩腜10面7、8題及B2、3題.

高中數(shù)學教案7

  教學目標:

 。1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題。

 。2)進一步理解曲線的方程和方程的曲線。

 。3)初步掌握求曲線方程的方法。

 。4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力。

  教學重點、難點:

  求曲線的方程。

  教學用具:

  計算機。

  教學方法:

  啟發(fā)引導法,討論法。

  教學過程:

  【引入】

  1、提問:什么是曲線的方程和方程的曲線。

  學生思考并回答。教師強調(diào)。

  2、坐標法和解析幾何的意義、基本問題。

  對于一個幾何問題,在建立坐標系的基礎(chǔ)上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何。解析幾何的兩大基本問題就是:

 。1)根據(jù)已知條件,求出表示平面曲線的方程。

 。2)通過方程,研究平面曲線的性質(zhì)。

  事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節(jié)課就初步研究曲線方程的求法。

  【問題】

  如何根據(jù)已知條件,求出曲線的方程。

  【實例分析】

  例1:設(shè)、兩點的坐標是、(3,7),求線段的垂直平分線的方程。

  首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決。

  解法一:易求線段的'中點坐標為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

  ①

  分析、引導:上述問題是我們早就學過的,用點斜式就可解決。可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?

  (通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據(jù)就是定義中的兩條)。

  證明:(1)曲線上的點的坐標都是這個方程的解。

  設(shè)是線段的垂直平分線上任意一點,則

  即

  將上式兩邊平方,整理得

  這說明點的坐標是方程的解。

  (2)以這個方程的解為坐標的點都是曲線上的點。

  設(shè)點的坐標是方程①的任意一解,則

  到、的距離分別為

  所以,即點在直線上。

  綜合(1)、(2),①是所求直線的方程。

  至此,證明完畢;仡櫳鲜鰞(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設(shè)是線段的垂直平分線上任意一點,最后得到式子,如果去掉腳標,這不就是所求方程嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

  解法二:設(shè)是線段的垂直平分線上任意一點,也就是點屬于集合

  由兩點間的距離公式,點所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當然也不要忘了證明,即驗證兩條是否都滿足。顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應的思想。因此是個好方法。

  讓我們用這個方法試解如下問題:

  例2:點與兩條互相垂直的直線的距離的積是常數(shù)求點的軌跡方程。

  分析:這是一個純粹的幾何問題,連坐標系都沒有。所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系。然后仿照例1中的解法進行求解。

  求解過程略。

  【概括總結(jié)】通過學生討論,師生共同總結(jié):

  分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應有坐標系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正。說得更準確一點就是:

 。1)建立適當?shù)淖鴺讼担糜行驅(qū)崝?shù)對例如表示曲線上任意一點的坐標;

  (2)寫出適合條件的點的集合

 ;

  (3)用坐標表示條件,列出方程;

 。4)化方程為最簡形式;

 。5)證明以化簡后的方程的解為坐標的點都是曲線上的點。

  一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點。所以,通常情況下證明可省略,不過特殊情況要說明。

  上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正。

  下面再看一個問題:

  例3:已知一條曲線在軸的上方,它上面的每一點到點的距離減去它到軸的距離的差都是2,求這條曲線的方程。

  【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系。

  解:設(shè)點是曲線上任意一點,軸,垂足是(如圖2),那么點屬于集合

  由距離公式,點適合的條件可表示為

 、

  將①式移項后再兩邊平方,得

  化簡得

  由題意,曲線在軸的上方,所以,雖然原點的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為,它是關(guān)于軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示。

  【練習鞏固】

  題目:在正三角形內(nèi)有一動點,已知到三個頂點的距離分別為、、,且有,求點軌跡方程。

  分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示。設(shè)、的坐標為、,則的坐標為,的坐標為。

  根據(jù)條件,代入坐標可得

  化簡得

 、

  由于題目中要求點在三角形內(nèi),所以,在結(jié)合①式可進一步求出、的范圍,最后曲線方程可表示為

  【小結(jié)】師生共同總結(jié):

  (1)解析幾何研究研究問題的方法是什么?

 。2)如何求曲線的方程?

 。3)請對求解曲線方程的五個步驟進行評價。各步驟的作用,哪步重要,哪步應注意什么?

  【作業(yè)】課本第72頁練習1,2,3;

高中數(shù)學教案8

  1.教學目標

  (1)知識目標: 1.在平面直角坐標系中,探索并掌握圓的標準方程;

  2.會由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.

  (2)能力目標: 1.進一步培養(yǎng)學生用解析法研究幾何問題的能力;

  2.使學生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;

  3.增強學生用數(shù)學的意識.

  (3)情感目標:培養(yǎng)學生主動探究知識、合作交流的意識,在體驗數(shù)學美的過程中激發(fā)學生的學習興趣.

  2.教學重點.難點

  (1)教學重點:圓的標準方程的求法及其應用.

  (2)教學難點:會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的.標準方程以及選擇恰

  當?shù)淖鴺讼到鉀Q與圓有關(guān)的實際問題.

  3.教學過程

  (一)創(chuàng)設(shè)情境(啟迪思維)

  問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?

  [引導] 畫圖建系

  [學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復習)

  解:以某一截面半圓的圓心為坐標原點,半圓的直徑ab所在直線為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個隧道。

  (二)深入探究(獲得新知)

  問題二:1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時又如何呢?

  [學生活動] 探究圓的方程。

  [教師預設(shè)] 方法一:坐標法

  如圖,設(shè)m(x,y)是圓上任意一點,根據(jù)定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

  由兩點間的距離公式,點m適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應用舉例(鞏固提高)

  i.直接應用(內(nèi)化新知)

  問題三:1.寫出下列各圓的方程(課本p77練習1)

  (1)圓心在原點,半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經(jīng)過點 ,圓心在點 .

  2.根據(jù)圓的方程寫出圓心和半徑

  (1) ; (2) .

  ii.靈活應用(提升能力)

  問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

  [教師引導]由問題三知:圓心與半徑可以確定圓.

  2.已知圓的方程為 ,求過圓上一點 的切線方程.

  [學生活動]探究方法

  [教師預設(shè)]

  方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)

  方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)

  方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關(guān)系式)

  3.你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是 ,經(jīng)過圓上一點 的切線的方程是: .

  iii.實際應用(回歸自然)

  問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).

  [多媒體課件演示創(chuàng)設(shè)實際問題情境]

  (四)反饋訓練(形成方法)

  問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

  3.求圓x2 y2=13過點(-2,3)的切線方程.

  4.已知圓的方程為 ,求過點 的切線方程.

高中數(shù)學教案9

  教學目標:

  1.了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系.

  2.會求一些簡單函數(shù)的反函數(shù).

  3.在嘗試、探索求反函數(shù)的過程中,深化對概念的認識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學思想方法的認識.

  4.進一步完善學生思維的深刻性,培養(yǎng)學生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力.

  教學重點:求反函數(shù)的方法.

  教學難點:反函數(shù)的概念.

  教學過程

  教學活動

  設(shè)計意圖一、創(chuàng)設(shè)情境,引入新課

  1.復習提問

 、俸瘮(shù)的概念

 、趛=f(x)中各變量的意義

  2.同學們在物理課學過勻速直線運動的位移和時間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù).在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù).什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學習的內(nèi)容.

  3.板書課題

  由實際問題引入新課,激發(fā)了學生學習興趣,展示了教學目標.這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性.

  二、實例分析,組織探究

  1.問題組一:

  (用投影給出函數(shù)與;與()的圖象)

  (1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對稱;與()的圖象也關(guān)于直線y=x對稱.是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算.同樣,與()也互為逆運算.)

  (2)由,已知y能否求x?

  (3)是否是一個函數(shù)?它與有何關(guān)系?

  (4)與有何聯(lián)系?

  2.問題組二:

  (1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?

  3.滲透反函數(shù)的概念.

  (教師點明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)

  從學生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學生的認知特點,有利于培養(yǎng)學生抽象、概括的能力.

  通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設(shè)計問題,使學生對反函數(shù)有一個直觀的粗略印象,為進一步抽象反函數(shù)的概念奠定基礎(chǔ).

  三、師生互動,歸納定義

  1.(根據(jù)上述實例,教師與學生共同歸納出反函數(shù)的定義)

  函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域為 C.我們根據(jù)這個函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來,得到 x = j (y) .如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應,那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù).這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù).記作: .考慮到"用 x表示自變量, y表示函數(shù)"的習慣,將中的x與y對調(diào)寫成.

  2.引導分析:

  1)反函數(shù)也是函數(shù);

  2)對應法則為互逆運算;

  3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);

  4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

  5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

  6)要理解好符號f;

  7)交換變量x、y的原因.

  3.兩次轉(zhuǎn)換x、y的對應關(guān)系

  (原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)

  4.函數(shù)與其反函數(shù)的關(guān)系

  函數(shù)y=f(x)

  函數(shù)

  定義域

  A

  C

  值 域

  C

  A

  四、應用解題,總結(jié)步驟

  1.(投影例題)

  【例1】求下列函數(shù)的反函數(shù)

  (1)y=3x-1 (2)y=x 1

  【例2】求函數(shù)的反函數(shù).

  (教師板書例題過程后,由學生總結(jié)求反函數(shù)步驟.)

  2.總結(jié)求函數(shù)反函數(shù)的'步驟:

  1° 由y=f(x)反解出x=f(y).

  2° 把x=f(y)中 x與y互換得.

  3° 寫出反函數(shù)的定義域.

  (簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?

  (2)的反函數(shù)是________.

  (3)(x<0)的反函數(shù)是__________.

  在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設(shè)產(chǎn)生矛盾沖突,體會反函數(shù).在剖析定義的過程中,讓學生體會函數(shù)與方程、一般到特殊的數(shù)學思想,并對數(shù)學的符號語言有更好的把握.

  通過動畫演示,表格對照,使學生對反函數(shù)定義從感性認識上升到理性認識,從而消化理解.

  通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結(jié),培養(yǎng)學生分析、思考的習慣,以及歸納總結(jié)的能力.

  題目的設(shè)計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進.并體現(xiàn)了對定義的反思理解.學生思考練習,師生共同分析糾正.

  五、鞏固強化,評價反饋

  1.已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)

  (1)y=-2x 3(xR) (2)y=-(xR,且x)

  ( 3 ) y=(xR,且x)

  2.已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值.

  五、反思小結(jié),再度設(shè)疑

  本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟.互為反函數(shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究.

  (讓學生談一下本節(jié)課的學習體會,教師適時點撥)

  進一步強化反函數(shù)的概念,并能正確求出反函數(shù).反饋學生對知識的掌握情況,評價學生對學習目標的落實程度.具體實踐中可采取同學板演、分組競賽等多種形式調(diào)動學生的積極性."問題是數(shù)學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂.

  六、作業(yè)

  習題2.4第1題,第2題

  進一步鞏固所學的知識.

  教學設(shè)計說明

  "問題是數(shù)學的心臟".一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程.本節(jié)教案通過一個物理學中的具體實例引入反函數(shù),進而又通過若干函數(shù)的圖象進一步加以誘導剖析,最終形成概念.

  反函數(shù)的概念是教學中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號.由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質(zhì)上去把握反函數(shù)的概念.為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關(guān)系預先揭示,進而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進而得出概念,這正是數(shù)學研究的順序,符合學生認知規(guī)律,有助于概念的建立與形成.另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用.通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環(huán)節(jié),充分調(diào)動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養(yǎng)學生的逆向思維.使學生自然成為學習的主人。

高中數(shù)學教案10

  一、教學目標

  (1)了解含有“或”、“且”、“非”復合命題的概念及其構(gòu)成形式;

  (2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;

  (3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復合命題;

  (4)能識別復合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;

  (5)會用真值表判斷相應的復合命題的真假;

  (6)在知識學習的基礎(chǔ)上,培養(yǎng)學生簡單推理的技能。

  二、教學重點難點:

  重點是判斷復合命題真假的方法;難點是對“或”的含義的理解。

  三、教學過程

  1.新課導入

  在當今社會中,人們從事任何工作、學習,都離不開邏輯。具有一定邏輯知識是構(gòu)成一個公民的文化素質(zhì)的重要方面。數(shù)學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調(diào)邏輯性。如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經(jīng)常犯邏輯性的錯誤。其實,同學們在初中已經(jīng)開始接觸一些簡易邏輯的知識。

  初一平面幾何中曾學過命題,請同學們舉一個命題的例子。(板書:命題。)

  (從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關(guān)知識。)

  (同學議論結(jié)果,答案是肯定的)

  教師提問:什么是命題?

  (學生進行回憶、思考。)

  概念總結(jié):對一件事情作出了判斷的語句叫做命題。

  (教師肯定了同學的回答,并作板書。)

  由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題。

  (教師利用投影片,和學生討論以下問題。)

  例1 判斷以下各語句是不是命題,若是,判斷其真假:

  命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題。

  初中所學的`命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎(chǔ)上,介紹簡易邏輯的知識。

  2.講授新課

  大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內(nèi)容主要講了哪些問題?

  (片刻后請同學舉手回答,一共講了四個問題。師生一道歸納如下。)

  (1)什么叫做命題?

  可以判斷真假的語句叫做命題。

  判斷一個語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題。有些語句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).

  (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”。

  “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞。邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式。

  對“或”的理解,可聯(lián)想到集合中“并集”的概念。 中的“或”,它是指“ ”、“ ”中至少一個是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能。

  對“且”的理解,可聯(lián)想到集合中“交集”的概念。 中的“且”,是指“ ”、“ 這兩個條件都要滿足的意思。

  對“非”的理解,可聯(lián)想到集合中的“補集”概念,若命題 對應于集合 ,則命題非 就對應著集合 在全集 中的補集 .

  命題可分為簡單命題和復合命題。

  不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題。簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題。

  由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復合命題。

  (4)命題的表示:用 , , , ,……來表示。

  (教師根據(jù)學生回答的情況作補充和強調(diào),特別是對復合命題的概念作出分析和展開。)

  我們接觸的復合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式。

  給出一個含有“或”、“且”、“非”的復合命題,應能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應能根據(jù)所給出的兩個簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復合命題。

  對于給出“若 則 ”形式的復合命題,應能找到條件 和結(jié)論 .

  在判斷一個命題是簡單命題還是復合命題時,不能只從字面上來看有沒有“或”、“且”、“非”。例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復合命題。

  3.鞏固新課

  例2 判斷下列命題,哪些是簡單命題,哪些是復合命題。如果是復合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題。

  (1) ;

  (2)0.5非整數(shù);

  (3)內(nèi)錯角相等,兩直線平行;

  (4)菱形的對角線互相垂直且平分;

  (5)平行線不相交;

  (6)若 ,則 .

  (讓學生有充分的時間進行辨析。教材中對“若…則…”不作要求,教師可以根據(jù)學生的情況作些補充。)

  例3 寫出下表中各給定語的否定語(用課件打出來).

  若給定語為

  等于

  大于

  是

  都是

  至多有一個

  至少有一個

  至多有個

  其否定語分別為

  分析:“等于”的否定語是“不等于”;

  “大于”的否定語是“小于或者等于”;

  “是”的否定語是“不是”;

  “都是”的否定語是“不都是”;

  “至多有一個”的否定語是“至少有兩個”;

  “至少有一個”的否定語是“一個都沒有”;

  “至多有 個”的否定語是“至少有 個”。

  (如果時間寬裕,可讓學生討論后得出結(jié)論。)

  置疑:“或”、“且”的否定是什么?(視學生的情況、課堂時間作適當?shù)谋嫖雠c展開。)

  4.課堂練習:第26頁練習1

  5.課外作業(yè):第29頁習題1.6

高中數(shù)學教案11

  一、教學目標

  【知識與技能】

  在掌握圓的標準方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。

  【過程與方法】

  通過對方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。

  【情感態(tài)度與價值觀】

  滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學思想方法,提高學生的整體素質(zhì),激勵學生創(chuàng)新,勇于探索。

  二、教學重難點

  【重點】

  掌握圓的一般方程,以及用待定系數(shù)法求圓的'一般方程。

  【難點】

  二元二次方程與圓的一般方程及標準圓方程的關(guān)系。

  三、教學過程

 。ㄒ唬⿵土暸f知,引出課題

  1、復習圓的標準方程,圓心、半徑。

  2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

高中數(shù)學教案12

  教學目標

  1.理解的概念,掌握的通項公式,并能運用公式解決簡單的問題.

 。1)正確理解的定義,了解公比的概念,明確一個數(shù)列是的限定條件,能根據(jù)定義判斷一個數(shù)列是,了解等比中項的概念;

 。2)正確認識使用的表示法,能靈活運用通項公式求的首項、公比、項數(shù)及指定的項;

  (3)通過通項公式認識的性質(zhì),能解決某些實際問題.

  2.通過對的研究,逐步培養(yǎng)學生觀察、類比、歸納、猜想等思維品質(zhì).

  3.通過對概念的歸納,進一步培養(yǎng)學生嚴密的思維習慣,以及實事求是的科學態(tài)度.

  教學建議

  教材分析

 。1)知識結(jié)構(gòu)

  是另一個簡單常見的數(shù)列,研究內(nèi)容可與等差數(shù)列類比,首先歸納出的定義,導出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應用.

 。2)重點、難點分析

  教學重點是的定義和對通項公式的認識與應用,教學難點在于通項公式的推導和運用.

 、倥c等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項公式得出的特性,這些是教學的重點.

  ②雖然在等差數(shù)列的學習中曾接觸過不完全歸納法,但對學生來說仍然不熟悉;在推導過程中,需要學生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導是難點.

 、蹖Φ炔顢(shù)列、的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.

  教學建議

 。1)建議本節(jié)課分兩課時,一節(jié)課為的.概念,一節(jié)課為通項公式的應用.

 。2)概念的引入,可給出幾個具體的例子,由學生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個等差數(shù)列和幾個混在一起給出,由學生將這些數(shù)列進行分類,有一種是按等差、等比來分的,由此對比地概括的定義.

 。3)根據(jù)定義讓學生分析的公比不為0,以及每一項均不為0的特性,加深對概念的理解.

  (4)對比等差數(shù)列的表示法,由學生歸納的各種表示法.啟發(fā)學生用函數(shù)觀點認識通項公式,由通項公式的結(jié)構(gòu)特征畫數(shù)列的圖象.

  (5)由于有了等差數(shù)列的研究經(jīng)驗,的研究完全可以放手讓學生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).

 。6)可讓學生相互出題,解題,講題,充分發(fā)揮學生的主體作用.

  教學設(shè)計示例

  課題:的概念

  教學目標

  1.通過教學使學生理解的概念,推導并掌握通項公式.

  2.使學生進一步體會類比、歸納的思想,培養(yǎng)學生的觀察、概括能力.

  3.培養(yǎng)學生勤于思考,實事求是的精神,及嚴謹?shù)目茖W態(tài)度.

  教學重點,難點

  重點、難點是的定義的歸納及通項公式的推導.

  教學用具

  投影儀,多媒體軟件,電腦.

  教學方法

  討論、談話法.

  教學過程

  一、提出問題

  給出以下幾組數(shù)列,將它們分類,說出分類標準.(幻燈片)

 、伲2,1,4,7,10,13,16,19,…

  ②8,16,32,64,128,256,…

 、1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1,,,…

  ⑤31,29,27,25,23,21,19,…

  ⑥1,-1,1,-1,1,-1,1,-1,…

  ⑦1,-10,100,-1000,10000,-100000,…

  ⑧0,0,0,0,0,0,0,…

  由學生發(fā)表意見(可能按項與項之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學生看不出③的情況也無妨,得出定義后再考察③是否為).

  二、講解新課

  請學生說出數(shù)列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設(shè)每經(jīng)過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設(shè)開始有一個變形蟲,經(jīng)過一個單位時間它分裂為兩個變形蟲,經(jīng)過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù)這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——.(這里播放變形蟲分裂的多媒體軟件的第一步)

 。ò鍟

  1.的定義(板書)

  根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學生概括出來的教師寫出的定義,標注出重點詞語.

  請學生指出②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是.學生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學生再舉兩例.而后請學生概括這類數(shù)列的一般形式,學生可能說形如的數(shù)列都滿足既是等差又是,讓學生討論后得出結(jié)論:當時,數(shù)列既是等差又是,當時,它只是等差數(shù)列,而不是.教師追問理由,引出對的認識:

  2.對定義的認識(板書)

 。1)的首項不為0;

 。2)的每一項都不為0,即;

  問題:一個數(shù)列各項均不為0是這個數(shù)列為的什么條件?

 。3)公比不為0.

  用數(shù)學式子表示的定義.

  是①.在這個式子的寫法上可能會有一些爭議,如寫成,可讓學生研究行不行,好不好;接下來再問,能否改寫為是?為什么不能?

  式子給出了數(shù)列第項與第項的數(shù)量關(guān)系,但能否確定一個?(不能)確定一個需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.

  3.的通項公式(板書)

  問題:用和表示第項.

  ①不完全歸納法

  .

 、诏B乘法

  ,…,,這個式子相乘得,所以.

 。ò鍟1)的通項公式

  得出通項公式后,讓學生思考如何認識通項公式.

 。ò鍟2)對公式的認識

  由學生來說,最后歸結(jié):

 、俸瘮(shù)觀點;

 、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認識,此處再復習鞏固而已).

  這里強調(diào)方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓練)

  如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節(jié)課再研究.同學可以試著編幾道題.

  三、小結(jié)

  1.本節(jié)課研究了的概念,得到了通項公式;

  2.注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

  3.用方程的思想認識通項公式,并加以應用.

  四、作業(yè)(略)

  五、板書設(shè)計

  1.等比數(shù)列的定義

  2.對定義的認識

  3.等比數(shù)列的通項公式

 。1)公式

 。2)對公式的認識

  探究活動

  將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.

  參考答案:

  30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度.如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是粒,用計算器算一下吧(用對數(shù)算也行).

高中數(shù)學教案13

  【課題名稱】

  《等差數(shù)列》的導入

  【授課年級】

  高中二年級

  【教學重點】

  理解等差數(shù)列的概念,能夠運用等差數(shù)列的定義判斷一個數(shù)列是否為等差數(shù)列。

  【教學難點】

  等差數(shù)列的性質(zhì)、等差數(shù)列“等差”特點的理解,

  【教具準備】多媒體課件、投影儀

  【三維目標】

  ㈠知識目標:

  了解公差的概念,明確一個等差數(shù)列的限定條件,能根據(jù)定義判斷一個等差數(shù)列是否是一個等差數(shù)列;

  ㈡能力目標:

  通過尋找等差數(shù)列的共同特征,培養(yǎng)學生的觀察力以及歸納推理的能力;

  ㈢情感目標:

  通過對等差數(shù)列概念的歸納概括,培養(yǎng)學生的觀察、分析資料的能力。

  【教學過程】

  導入新課

  師:上兩節(jié)課我們已經(jīng)學習了數(shù)列的定義以及給出表示數(shù)列的幾種方法—列舉法、通項法,遞推公式、圖像法。這些方法分別從不同的`角度反映了數(shù)列的特點。下面我們觀察以下的幾個數(shù)列的例子:

  (1)我們經(jīng)常這樣數(shù)數(shù),從0開始,每個5個數(shù)可以得到數(shù)列:0,5,10,15,20,()

  (2)2000年,在澳大利亞悉尼舉行的奧運會上,女子舉重被正式列為比賽項目,該項目工設(shè)置了7個級別,其中較輕的4個級別體重組成的數(shù)列(單位:kg)為48,53,58,63,()試問第五個級別體重多少?

  (3)為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,水庫管理員定期放水清庫以清除水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個數(shù)列:18,15.5,13,10.5,8,(),則第六個數(shù)應為多少?

  (4)10072,10144,10216,(),10360

  請同學們回答以上的四個問題

  生:第一個數(shù)列的第6項為25,第二個數(shù)列的第5個數(shù)為68,第三個數(shù)列的第6個數(shù)為5.5,第四個數(shù)列的第4個數(shù)為10288。

  師:我來問一下,你是依據(jù)什么得到了這幾個數(shù)的呢?請以第二個數(shù)列為例說明一下。

  生:第二個數(shù)列的后一項總比前一項多5,依據(jù)這個規(guī)律我就得到了這個數(shù)列的第5個數(shù)為68.

  師:說的很好!同學們再仔細地觀察一下以上的四個數(shù)列,看看以上的四個數(shù)列是否有什么共同特征?請注意,是共同特征。

  生1:相鄰的兩項的差都等于同一個常數(shù)。

  師:很好!那作差是否有順序?是否可以顛倒?

  生2:作差的順序是后項減去前項,不能顛倒!

  師:正如生1的總結(jié),這四個數(shù)列有共同的特征:從第二項起,每一項與它的前一項的差都等于同一個常數(shù)(即等差)。我們叫這樣的數(shù)列為等差數(shù)列。這就是我們這節(jié)課要研究的內(nèi)容。

  推進新課

  等差數(shù)列的定義:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差都等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等差數(shù)列的公差,公差常用字母d表示。從剛才的分析,同學們應該注意公差d一定是由后項減前項。

  師:有哪個同學知道定義中的關(guān)鍵字是什么?

  生2:“從第二項起”和“同一個常數(shù)”

高中數(shù)學教案14

  一、活動主題的提出

  根據(jù)新課改課程標準及高中數(shù)學教學要求,為切實實施素質(zhì)教育,改革教學方式與方法,變教教材為用教材,有機地開展校本課程,培養(yǎng)學生的綜合實踐能力和創(chuàng)新能力,培養(yǎng)學生的探索精神和用數(shù)學的意識,以教材中的閱讀與思考為素教材,推進高中數(shù)學研究性學習的進程,對該問題進行研究,旨在為深化課堂教學內(nèi)容,促進性自主研究和學習,從而探討高中數(shù)學研究性學習的實施辦法。

  二、活動的具體目標

  1、知識目標:通過集合中元素的個數(shù)問題的研究,探求有限集合中元素個數(shù)間的關(guān)系,比較幾個集合中元素個數(shù)的多少的方法。

  2、能力目標:能多方面、多角度、多層面來探究問題,運用知識來解決問題,培養(yǎng)學生的發(fā)散思維和創(chuàng)新思維能力。

  3、情感目標:學該課題的研究,激發(fā)學生的學習熱情和學習興趣,享受探索成功的樂趣,培養(yǎng)科學態(tài)度與科學精神。

  三、活動的實施過程、方式

  1、出示活動內(nèi)容與思考的問題(5分鐘)

 。1)、學校小賣部進了兩次貨,第一次進的貨是圓珠筆、鋼筆、橡皮、筆記本、方便面、汽水共6種,第二次進的貨是圓珠筆、鉛筆、火腿腸、方便面共4種,兩次一共進了幾種貨?回答兩次一共進了10(6+4)種,對嗎?應如何解答?有哪些方法?因此可以得出什么結(jié)論(集合中元素個數(shù)間的關(guān)系)?

 。2)、學校先舉辦了一次田徑運動會,某班有8名同學參賽,又舉辦了一次球類運動會,這個班有12名同學參賽,兩次運動會都參賽的有3人。兩次運動會中,這個班共有多少名同學參賽?應如何解答?由此解出以下結(jié)論(集合中元素個數(shù)間的關(guān)系)?又如:某班共30人,其中15人喜愛籃球運動,10人喜愛乒乓球運動,8人對這兩項運動都不喜愛,則喜愛籃球運動但不喜愛乒乓球運動的人是多少?應如何解答?

  (3)涉及三個及三個以上,集合的并、交問題,能用類似的結(jié)論嗎?應怎樣表達?如:學校開運動會,設(shè)。若參加一百米的同學有5人,參加二百米跑的同學有6人,參加四百米跑的同學有7人,參加一百、二百同學有2人,參加一百、四百的同學有3人,參加二百、四百的同學有5人,三項都參加的'人有1人,求有多少人參賽?

 。4)設(shè)計比較集合與集合B=中元素的個數(shù)的多少的方法。

  2、活動分工及時間安排(25分鐘)

  全班以大組為單位(共四個大組)來研究以上4個問題。第一大組研究(1)問題,第二大組研究(2)個問題,第三大組研究(3)個問題,第四大組研究(4)個問題。要求每組由學生自行確定一位負責人,并由此同學組織具體活動,明確該同學是下步活動交流中心發(fā)言人。有余力的組可協(xié)助思考其它組的問題。教師下到各組視察,了解情況,并作必要的指導。

  3、活動交流(15分鐘)

  請每一小組中心發(fā)言人回答各自分配的問題,全班其它同學補充,教師引導學生概括,得出結(jié)論:

  列舉法

  問題(1)涉及的集合元素個數(shù)較少而且具體,可用列舉法寫出,很快可解決此問題,并由特殊到一般的思維方式概括得出:

  圖解法

  當集合元素個數(shù)較少而不具體時,據(jù)題意畫出集合的韋恩圖,從而解決實際問題如問題(2),并歸納得出:這一結(jié)論。

  數(shù)形結(jié)合法

  利用集合間的關(guān)系,結(jié)合示意圖,據(jù)未知可設(shè)適當?shù)奈粗獢?shù),建立方程求解,如問題(2)中的第二個問題。設(shè)喜愛籃球運動但不喜愛乒乓球運動的人數(shù)為x,則兩項都喜愛的有(15-x)人,喜愛乒乓球而不喜愛籃球的有[10-(15-x)]人,據(jù)題意有:x+(15-x)+[10-(15-x)]+8=30,解得x=12。故喜愛籃球運動但不喜愛乒乓球運動的有12人。

  歸納、猜想法

  通過對問題(3)的求解,并結(jié)合問題(1)、(2)的求解,歸納、猜想出:。

  概念派生法

  通過問題(4)的研究求解,大部分學生較易得出A,因此,由真子集的概念得出集合B的元素的個數(shù)少于集合A的元素的個數(shù)。這個結(jié)論是由概念的內(nèi)涵派生出來的。

  “對應”法

  經(jīng)研究討論,同學中有“集合A的元素個數(shù)等于集合B的元素個數(shù)”的結(jié)論。少數(shù)同學運用“對應”思想:,顯然有此結(jié)論。這是一個多好的想法啊!

  四、活動評價

  充分運用高中數(shù)學子教材資源“閱讀與思考”,廣泛開展第二課堂活動,能很好地調(diào)動學生的學習興趣,能很好地開發(fā)學生的創(chuàng)造潛能,有助于學生探究能力和創(chuàng)新能力的提高。通過本課題的研究,至少有以下成功之處:第一、深化了課堂知識,進一步鞏固和拓展了所學知識;第二、培養(yǎng)了學生探究能力,很好地改變了學生的學習方式、方法;第三、增強了學生運用知識解決問題的意識:該課題以解決問題為背景,通過分工與合作和恰當?shù)匾龑,學生用知識的意識明顯增強,運用知識解決問題的能力明顯提高;第四、培養(yǎng)了學生的思維品質(zhì)。通過問題(4)的研究,我們得出了不一樣的結(jié)論,但都有道理,學生向引發(fā)爭議,學生的批判性思維得到較好的發(fā)展。

  五、注意事項

  1、教師課題準備要充分。要認真鉆研材料;查閱相關(guān)資料或研究成果;作好周密的活動計劃。切忌無準備或準備不充分就上課。

  2、避免“活動研究課”上課學科化,要充分地讓學生自主的活動,不人為地牽制學生。

  3、積極引導學生搞好“交流——合作”環(huán)節(jié)的活動,充分聽取學生的意見,讓學生自己總結(jié)作法和研究成果,切忌教師包辦,強加于人。

  4、堅持引導學生寫好活動總結(jié)和體會,歸納研究方法與成果,忌只管上課不管下課,課后不鞏固。

高中數(shù)學教案15

  1. 該生能以校規(guī)班規(guī)嚴格要求自己。有較強的集體榮譽感,學習態(tài)度認真,能吃苦,肯下功夫,成績穩(wěn)定。生活艱苦樸素,待人熱情大方,是個基礎(chǔ)扎實,品德兼優(yōu)的好學生。

  2. 該生能嚴格遵守學校的規(guī)章制度。尊敬師長,團結(jié)同學。熱愛集體,積極配合其他同學搞好班務工作,勞動積極肯干。學習刻苦認真,勤學好問,學習成績穩(wěn)定,學風和工作作風都較為踏實,堅持出滿勤,并能積極參加社會實踐和文體活動,勞動積極。是一位發(fā)展全面的好學生。

  3. 你是同學擁護、老師信任的班委,乖巧懂事、伶俐開朗、自信大方、樂觀合群,是同學們學習的榜樣。你愛護集體榮譽,有很強的工作能力,總是及時協(xié)助老師完成班務工作,是老師的得力幫手。你心性坦蕩,個性鮮明,能大膽說出自己的想法,難能可貴。而你在運動場上的爆發(fā)力更讓老師同學們驚嘆!潛力深厚,希望在高中時期能逐漸發(fā)掘出來!

  4. 你是個做事小心翼翼,感情細膩豐富的女孩,每次看你認真的樣子老師都很感動。你也是幸運的,周邊有很多人都在關(guān)愛著你,所以,對他們,尤其是父母,記得不要太莽撞,不要太任性,要學著體諒,學著換位思考,學著懂事。另外,今后要多運動、多鍛煉,有健康才能成就美好未來!

  5. 你堅強勇敢、樂觀大方的性格讓老師非常欣賞。學習上始終保持著上進好學的決心和韌性,生活中始終能做到豁達開朗,還有著良好的審美和繪畫的專長,令人欽佩!以入世的態(tài)度做事,以出世的態(tài)度做人,這是我送你的一句話,希望你保持好心態(tài),迎接新的學習生活。

  6. 最有希望得成功者,并不是才干出眾的人,而是那些最善于利用時機去努力開創(chuàng)的人。你是很有才華的孩子,老師希望你能把握好機會,求得上進。你聰明,但也有著許多人共同的毛病——粗心大意和缺乏毅力,若能集中精力持之以恒,堅定目標致力于學習,定能大限度地發(fā)揮你的聰明才智!

  7. 該生遵紀守法,積極參加社會實踐和文體活動,集體觀念強,勞動積極肯干。是一位誠實守信,思想上進,尊敬老師,團結(jié)同學,熱心助人,積極參加班集體活動,有體育特長,學習認真,具有較好綜合素質(zhì)的優(yōu)秀學生。

  8. 你聰穎活潑,渾身洋溢青春氣息。你愛好廣泛,善鉆精思,具備一定能力,潛質(zhì)無限。但是在有些時候,在面臨一些問題的時候,你總表現(xiàn)得太過緊張,其實,征服畏懼、建立自信的最快最確實的方法,就是大膽地去做你認為害怕的事,直到你獲得成功的經(jīng)驗。繼續(xù)努力!

  9. 你是對3班這個集體的成長貢獻很大的孩子,是老師的得力幫手。你干練沉穩(wěn),堅強隱忍,能從大局出發(fā)考慮問題,在很多時候能獨當一面。你獨立能力強,能夠吃苦,但在進入高中的學習上卻顯得有些吃力。其實你還有很深的潛力尚未挖掘,找對方法,好好加油,世上沒有絕望的處境,只有對處境絕望的人,請樂觀一點,踏實地走好接下來的每一步!

  10. 你是個能獨立、有主見的女孩,有自己的想法,有一定的決斷力。但是獨立不代表乖張,有想法不代表恣意妄為。令人高興的是,你在這點上做的還是不錯的。晟君,老師希望你能一如既往地關(guān)注于學習而不懈怠,能堅持懷揣著平和感恩的心態(tài)簡單快樂地生活。

  11. 你給我的第一印象是有些沉默,其實和朋友在一起時還是很有自己想法的對吧?你看,你布置的新年教室多么出彩!請繼續(xù)秀出真實而精彩的`你!這半個學期的學習有點力不從心,請保持謹慎和細心,保持好的學習習慣,及時彌補所缺漏的環(huán)節(jié),大步向前進!

  12. 該生認真遵守學校的規(guī)章制度,積極參加社會實踐和文體活動,集體觀念強,勞動積極肯干。尊敬師長,團結(jié)同學。學習態(tài)度認真,能吃苦,肯下功夫,成績穩(wěn)定上升。是有理想有抱負,基礎(chǔ)扎實,心理素質(zhì)過硬、全面發(fā)展的優(yōu)秀學生。

  13. 你是一個真誠待人、溫柔可愛的女生。也許是因為你有些不緊不慢的性格,所以在學習上有時候行動力不夠堅決,造成了學習成績的不穩(wěn)定。請多利用假期時間好好補缺補漏,向上的姿態(tài)才是最重要的!

  14. 老師同學們都在說你是個很有責任心和上進心的孩子,在班級需要的時候,你承擔了勞動委員的重任,經(jīng)常最后一個離開,就為了班級能有個整潔的環(huán)境。老師很感謝你!而更可貴的是,你懂得安排自己的時間,在工作的空隙抓緊時間做作業(yè)。希望下學期你的學習成績也能隨你的毅力和執(zhí)著步步攀升,加油,羽騰!

  15. 其實你擁有你自己都不確知的才華,從你的文字中可以讀出這樣的信息:你時常沉醉在自己的小世界中,做自己喜歡做的事情。老師希望你能敞開心扉,多與旁人交流你快樂的體驗和想法,不要吝嗇展示自己!還有,成功需要成本,時間也是一種成本,對時間的珍惜就是對成本的節(jié)約。請務必抓緊每寸光陰,努力學習!

  16. 你知道嗎?在世界上那些最容易的事情中,拖延時間是最不費力的。而學習卻是艱辛的勞動過程。表面安靜的你其實心里有著自己的想法和煩憂。于是在不經(jīng)意間,精力被不自覺地轉(zhuǎn)移到一些瑣事上,卻總無法完全集中心智于學業(yè)。也許你也已經(jīng)意識到,也有了些許進步,那么請千萬記住要持之以恒,要付出比別人更多倍的努力!

  17. 你是班級的數(shù)學科代表,老師很高興選擇你擔任這個職務,不僅能促進自己的進步,而且也展現(xiàn)了你負責工作的一面。但是學習是要和工作一樣,需要一絲不茍的態(tài)度,包括上課的聽講是否及時而有效,包括功課的完成是否嚴謹而認真。下學期,愿看到一個更加全神貫注更加專心致志的你!

  18. 我一直難忘在運動會上你擔任前導牌的樣子,為班級添光增彩了不少!你有著繪畫的特長,是個善良、真誠的女孩,有著細膩豐富的內(nèi)心,也許只需一點鼓勵,你便會勇敢走下去,希望能在平時多聽見你爽朗的笑聲!

  19. 可愛、熱情、謹小慎微,這都是你的代名詞。你略為靦腆的微笑讓人印象深刻。老師一直認為你是能夠認真仔細地作好每一件事情、成就每一個細節(jié)的,因此,希望你能珍惜時間,提高效率,在學習上狠狠加油!

  20. 其實,任何事都是有重量的,那么,就看你把它變成壓力還是重力了。在這個方面,我很高興地看到你做的很好,你學習自覺,成績便是努力的證明。老師安排你做物理科代表就是希望能多培養(yǎng)你的責任意識、大局意識和管理能力,希望以后在這方面能看到你更加出色的表現(xiàn)!

  21. 你是個可愛善良,懂事乖巧的女孩。作為語文科代表,兢兢業(yè)業(yè),一絲不茍。你對人也是特別真誠熱情,偶爾透露出的憂郁是旁人不易察覺的。但是你知道,成長就是破蛹成蝶的過程,高中是人生的重要階段,勇敢地邁好每一步吧,享受成長帶來的所有痛苦和快樂!

  22. 你很有能力,也很潛力,但欠缺的卻是耐力和毅力。君子厚積而薄發(fā),希望你能振作精神,跟上進度,迎頭趕上,期待你獲得更大的進步!

  23. 你曾經(jīng)和我說過你的理想,但你對理想的憧憬和你所付出的努力程度卻總是難成正比。若現(xiàn)在你覺得有障礙擋在前行之路上,那就說明你還沒有把目標看的足夠清楚。寧在事前心力交瘁的努力,事后悠然自得;也不要在事前悠然自得,而在臨事時無法適從。你現(xiàn)在欠缺的就是對自己發(fā)狠奮進的恒心,柏宇,“要想人前顯貴,必定人后受罪”,成功要靠實踐去爭取,而不是光靠幾句好聽的決心話!

  24. 你乖巧大方,組織能力一流,但在學習上總顯得有些力不從心?祚R加鞭迎頭趕上固然是必需,但也別太心急,要知道,欲速則不達,只要踏實努力,不懂就問,采用適合自己的學習方法,就會看到進步。也許剛開始的時候進步很小,小到你看不見,但是不要灰心,萬事開頭難!將事前的憂慮,換為事前的思考和計劃,徹底放松,加強鍛煉,養(yǎng)足精神再迎戰(zhàn)!你能做到的,蔡煒,加油!

  25. 該生能遵守校紀班規(guī),尊敬師長,能與同學和睦相處,勤學好問,有較強的獨立鉆研能力,分析問題比較深入、全面,在某些問題上有獨特的見解,學習成績在班上一直能保持前茅,樂于助人,能幫助學習有困難的同學。

  26. 不論在體育場還是教室里,看到你神采奕奕的樣子,總讓人聯(lián)想到“英姿颯爽”這四個字。這確是一個高中生應該有的精神面貌。你做事認真,顧全大局,真的非常難得。希望能保持這樣良好的狀態(tài),繼續(xù)前進!也希望能夠多和老師同學交流,多提些對班集體建設(shè)的好建議!

  27. 該生能以校規(guī)班規(guī)嚴格要求自己,積極參加社會實踐和文體活動。尊敬師長,團結(jié)同學。集體觀念強,勞動積極肯干。積極參加各種集體活動和社會實踐活動。學習目的明確,刻苦認真,成績穩(wěn)定,是一個有理想、有抱負,基礎(chǔ)扎實,心理素質(zhì)過硬,全面發(fā)展的優(yōu)秀學生。

  28. 我很高興看到你是個有上進心,有責任感,能夠讓家人、師長寬慰的孩子。有努力就有回報,你下半學期的表現(xiàn)不就證明了這一點嗎?進步是隨著時間節(jié)節(jié)上升的,不要太過急躁,要知道,若你不給自己設(shè)限,則人生中就沒有限制你發(fā)揮的藩籬。新學期要重整旗鼓,再接再勵!

  29. ××× 獨立性較強,對自己的能力也有準確的定位。建議今后學習上要養(yǎng)成勤思愛問的習慣,不能做井底之蛙,滿足于現(xiàn)狀,要充分利用他人的智慧,最后達到“好風憑借力,送我上青云”的目的。

  30. ××× 每天在教室,都能看到你埋頭苦讀的身影,可見讀書的態(tài)度很端正;而你每一次考試的成績雖然不拔尖,卻是在穩(wěn)步前進,可見讀書的效率還不錯。請繼續(xù)保持這種虛心求學、穩(wěn)步前進的態(tài)勢,相信一年半以后的高考,你必將嶄露頭角,脫穎而出。

【高中數(shù)學教案】相關(guān)文章:

數(shù)學教案高中教學06-11

高中必修數(shù)學教案01-07

高中數(shù)學教案10-26

高中必修4數(shù)學教案03-13

高中數(shù)學教案09-28

高中數(shù)學教案[通用]06-22

高中數(shù)學教案【推薦】05-26

【集合】高中數(shù)學教案05-22

高中數(shù)學教案[優(yōu)]05-20

高中高二數(shù)學教案11-14