高中數(shù)學(xué)教案15篇【實用】
作為一名為他人授業(yè)解惑的教育工作者,通常需要準備好一份教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。那么應(yīng)當(dāng)如何寫教案呢?以下是小編收集整理的高中數(shù)學(xué)教案,希望能夠幫助到大家。
高中數(shù)學(xué)教案1
一、自我介紹
我姓x,是你們的數(shù)學(xué)老師,因為是數(shù)學(xué)老師所以在自我介紹的時候喜歡給出自己的數(shù)字特征,也是希望通過這些方式能拓寬與大家交流的平臺,希望能與大家在課堂中相識,在生活中相知,不僅能成為你們知識的傳授者,方法的指引者,更希望成為你們情感上的依賴者。
二、相信大家對于高中學(xué)習(xí)都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節(jié)課我們不急于上新課,我想和大家聊一聊數(shù)學(xué),一起來思考為什么要學(xué)習(xí)數(shù)學(xué)及如何學(xué)好數(shù)學(xué)這兩個問題。
(一)為什么要學(xué)習(xí)數(shù)學(xué)
相信高一的第一節(jié)課是各位科任老師各顯神通的時候,通過各種有趣的方式來突出每門課的重要性,作為數(shù)學(xué)老師我表達上不如文科老師迂回婉轉(zhuǎn)和風(fēng)趣幽默,我們更喜歡用數(shù)字說明問題。大家知道北大最的院系是什么系嗎?早在蔡元培先生任北大校長時,就列數(shù)學(xué)系為北大第一系,這種傳統(tǒng)一直保持到現(xiàn)在。為什么數(shù)學(xué)系在高校中有如此重要的地位?課本主編寄語是這樣描述的:數(shù)學(xué)是有用的,數(shù)學(xué)有助于提高能力。
數(shù)學(xué)家華羅庚在《人民日報》精彩描述了數(shù)學(xué)在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁"等方面無處不有重要貢獻。
問題1:大家知道海王星是怎么發(fā)現(xiàn)的,冥王星又是怎么被請出十大行星行列的?
海王星的發(fā)現(xiàn)是在數(shù)學(xué)計算過程中發(fā)現(xiàn)的,天文望遠鏡的觀測只是驗證了人們的推論。
1812年,法國人布瓦德在計算天王星的運動軌道時,發(fā)現(xiàn)理論計算值同觀測資料發(fā)生了一系列誤差。這使許多天文學(xué)家紛紛致力這個問題的研究,進而發(fā)現(xiàn)天王星的脫軌與一個未知的引力的存在相關(guān)。也就是說有一個未知的天體作用于天王星。1846年9月23日。柏林天文臺收到來自法國巴黎的一封快信。發(fā)信人就是勒威耶。信中,勒威耶預(yù)告了一顆以往沒有發(fā)現(xiàn)的新星:在摩羯座8星東約5度的地方,有一顆8等小星,每天退行69角秒。當(dāng)夜,柏林天文臺的加勒把巨大的天文望遠鏡對準摩羯座,果真在那里發(fā)現(xiàn)了一顆新的8等星。又過了-天,再次找到了這顆8等星,它的位置比前一天后退了70角秒。這與勒威耶預(yù)告的相差甚微。全世界都震動了。人們依照勒威耶的建議,按天文學(xué)慣例,用神話里的名字把這顆星命名為"海王星"。
1930年美國天文學(xué)家湯博發(fā)現(xiàn)冥王星,當(dāng)時錯估了冥王星的質(zhì)量,以為冥王星比地球還大,所以命名為大行星。然而,經(jīng)過近30年的進一步觀測和計算,發(fā)現(xiàn)它的直徑只有2300公里,比月球還要小,等到冥王星的大小被確認,"冥王星是大行星"早已被寫入教科書,以后也就將錯就錯了。經(jīng)過多年的爭論,國際天文學(xué)聯(lián)合會通過投票表決做出最終決定,取消冥王星的行星資格。8月24日據(jù)國際天文學(xué)聯(lián)合會宣布,冥王星將被排除在行星行列之外,從而太陽系行星的數(shù)量將由九顆減為八顆。事實上,位居太陽系九大行星末席70多年的冥王星,自發(fā)現(xiàn)之日起地位就備受爭議。
馬克思說:"一種科學(xué)只有在成功運用數(shù)學(xué)時,才算達到了真正完善的地步。"正因為數(shù)學(xué)是日常生活和進一步學(xué)習(xí)必不可少的基礎(chǔ)和工具,一切科學(xué)到了最后都歸結(jié)為數(shù)學(xué)問題。
其實在我們的周圍有很多事情都是可以用數(shù)學(xué)可以來解決的,無非很多人都沒有用數(shù)學(xué)的眼光來看待。
問題2:徒認為上帝是萬能的。你們認為呢?如何來證明你的結(jié)論呢?(讓同學(xué)發(fā)言)
我的觀點:上帝不是萬能的。為什么呢?仔細聽我講來。
證明:(反證法)假如上帝是萬能的
那么他能夠制作出一塊無論什么力量都搬不動的石頭
根據(jù)假設(shè),既然上帝是萬能的,那么他一定能夠搬的動他自己制造的那石頭
這與"無論什么力量都搬不動的石頭"相矛盾
所以假設(shè)不成立
所以上帝不是萬能的。問題3:抓鬮對個人來說公平嗎?5張票中有一張獎票,那么先抽還是后抽對個人還說公平嗎?
當(dāng)然,我們學(xué)習(xí)的數(shù)學(xué)只是數(shù)學(xué)學(xué)科體系中很基礎(chǔ),很小的一部分,F(xiàn)在課本上學(xué)的未必能直接應(yīng)用于生活,主要是為以后學(xué)習(xí)更高層次的理科打好基礎(chǔ),同時,也為了掌握一些數(shù)學(xué)的思考方法以及分析問題解決問題的思維方式。哲學(xué)家培根說過:"讀詩使人靈秀,讀歷史使人明智,學(xué)邏輯使人周密,學(xué)哲學(xué)使人善辯,學(xué)數(shù)學(xué)使人聰明…",也有人形象地稱數(shù)學(xué)是思維的體操。下面我們通過具體的例子來體驗一下某些數(shù)學(xué)思想方法和思維方式。
故事一:據(jù)說國際象棋是古印度的一位宰相發(fā)明的。國王很欣賞他的這項發(fā)明,問他的宰相要什么賞賜。聰明的宰相說,"我所要的從一粒谷子(沒錯,是1粒,不是1兩或1斤)開始。在這個有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數(shù)加倍,……如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。"國王覺得宰相要的實在不多,就叫人按宰相的要求賞賜。但后來發(fā)現(xiàn)即使把全國所有的谷子抬來也遠遠不夠。
人們通常憑借自己掌握的數(shù)學(xué)知識耍些小聰明,使問題妙不可言。
數(shù)學(xué)游戲:兩人相繼輪流往長方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應(yīng)該先放還是后放才有必勝的把握。
數(shù)學(xué)思想:退到最簡單、最特殊的地方。
故事二:聰明的渡邊:20世紀40年代末,手寫工具突破性進展-圓珠筆問世,它以價廉、方便、書寫流利在社會上廣泛流傳,但寫到20萬字時就會因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質(zhì)量入手,從改進油墨性能入手進行改良,但收效甚微。于是廠家打出廣告:解決此問題獲獎金50萬元。當(dāng)時山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時就德育不用這一現(xiàn)象中受到啟發(fā),很好地解決了這一問題,你認為他會怎么做呢?
渡邊的成功之處就在于思維角度新,從問題的側(cè)面輕巧取勝。也正體現(xiàn)了數(shù)學(xué)學(xué)習(xí)中經(jīng)常用到的發(fā)散式思維。在數(shù)學(xué)學(xué)習(xí)中,既要有集中式思維又要有發(fā)散式思維。集中式思維是一種常用思維渠道,即為對問題的歸納,聯(lián)系思維方式,表現(xiàn)為對解題方法的模仿和繼承;而發(fā)散式思維即對問題開拓、創(chuàng)新,表現(xiàn)為對問題舉一反三,觸類旁通。在解決具體問題中,我們應(yīng)該將兩種思維方式相結(jié)合。
學(xué)數(shù)學(xué)有利于培養(yǎng)人的思維品質(zhì):結(jié)構(gòu)意識、整體意識、抽象意識、化歸意識、優(yōu)化意識、反思意識,盡管數(shù)學(xué)在培養(yǎng)學(xué)生的這些思維品質(zhì)方面和其他學(xué)科存在著交集,但數(shù)學(xué)在其中的'地位是無法被代替的。總之,學(xué)習(xí)數(shù)學(xué)可以使人思考問題更合乎邏輯,更有條理,更嚴密精確,更深入簡潔,更善于創(chuàng)造……
(二)如何學(xué)好數(shù)學(xué)
高中數(shù)學(xué)的內(nèi)容多,抽象性、理論性強,高中很注重自學(xué)能力的培養(yǎng)的,高中不會像初中那樣老師一天到晚盯著你,在高中一定要注重自學(xué)能力的培養(yǎng),誰的自學(xué)能力強,那么在一定的程度上影響著你的成績以及你將來你發(fā)展的前途。同時要注意以下幾點:
第一:對數(shù)學(xué)學(xué)科特點有清楚的認識
主編寄語里是這樣描述數(shù)學(xué)的特征的:數(shù)學(xué)是自然的。數(shù)學(xué)的概念、方法、思想都是人類長期實踐中自然發(fā)展形成的,以數(shù)域的發(fā)展為例,從自然數(shù)到有理數(shù)到實數(shù)再到復(fù)數(shù),都是由自然的認知沖突引起的。因此,在學(xué)習(xí)過程中我們有必要了解知識產(chǎn)生的背景,它的形成過程以及它的應(yīng)用,讓數(shù)學(xué)顯得合情合理,渾然天成。數(shù)學(xué)中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數(shù)學(xué)規(guī)則去學(xué)去想就能融會貫通,但是如果不把來龍去脈想清楚而是"想當(dāng)然"的話,那就學(xué)不下去了。
第二:要改變一個觀念。
有人會說自己的基礎(chǔ)不好。那我問下什么是基礎(chǔ)?今天所學(xué)的知識就是明天的基礎(chǔ)。明天學(xué)習(xí)的知識就是后天的基礎(chǔ)。所以要學(xué)好每一天的內(nèi)容,那么你打的基礎(chǔ)就是最扎實的了。所以現(xiàn)在你們是在同一個起跑線上的,無所謂基礎(chǔ)好不好。過去的幾年里我分別帶過五十一中和一中的學(xué)生,兩邊學(xué)生的課堂感覺差不多,應(yīng)該說接受能力不相上下,有的時候我會選擇在五十一中開公開課,因為課堂氣氛活躍、輕松,但是成績差異卻是很大,原因在于我們同學(xué)外課自主時間的投入太少,學(xué)習(xí)習(xí)慣不太好。
第三:學(xué)數(shù)學(xué)要摸索自己的學(xué)習(xí)方法
學(xué)習(xí)、掌握并能靈活應(yīng)用數(shù)學(xué)的途徑有千萬條,每個人都可以有與眾不同的數(shù)學(xué)學(xué)習(xí)方法。做習(xí)題、用數(shù)學(xué)解決各種問題是必需的,理解、學(xué)會證明、領(lǐng)會思想、掌握方法也是必需的。此外,還要發(fā)揮問題的作用,學(xué)會提問,熱心幫助別人解決問題,用自己的問題和別人的問題帶動自己的學(xué)習(xí)。同時,注意前后知識的銜接,類比地學(xué)、聯(lián)系地學(xué),既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。
第四:養(yǎng)成良好的學(xué)習(xí)習(xí)慣(與一中學(xué)生相比較)
、逭n前預(yù)習(xí)。怎樣預(yù)習(xí)呢?就是自己在上課之前把內(nèi)容先看一邊,把自己不懂的地方做個記號或者打個問號,以至于上課的時候重點聽,這樣才能夠很快提高自己的水平。但是預(yù)習(xí)不是很隨便的把課本看一邊,預(yù)習(xí)有個目標,那就是通過預(yù)習(xí)可以把書本后面的練習(xí)題可以自己獨立的完成。一中的同學(xué)預(yù)習(xí)就已經(jīng)有好幾個層次了,先是課本,再是精編,再是高考題典,上課對于他們來說是第一輪高考復(fù)習(xí)。
、嫔险n認真聽講。上課的時候準備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過我不大提倡數(shù)學(xué)課做筆記的。不過有一點,有些知識點比較重要,課本上又沒有的,我要求你們把它寫在課本上的相應(yīng)的空白地方。還有如果你覺得某個例題比較新或者比較重要,也可以把它記在書本的相應(yīng)位置上,這樣以后復(fù)習(xí)起來就一目了然了。那么草稿要來干什么的呢?課堂上你可以自己演算還有做課堂練習(xí)。
㈢關(guān)于作業(yè)。絕對不允許有抄作業(yè)的情況發(fā)生。如果我發(fā)現(xiàn)有誰抄作業(yè),那么既然他這樣喜歡抄,我就要你把當(dāng)天的作業(yè)多抄幾遍給我。那有人會問,碰到不會做的題目怎么辦?有兩個辦法:一、向同學(xué)請教,請教做題目的思路,而不是整個過程和答案。同學(xué)之間也要相互幫助,如果你讓他抄襲你的作業(yè)這樣不是幫助他而是害他,這個道理大家應(yīng)該明白吧。我非常提倡同學(xué)之間的相互討論問題的,這樣才能夠相互促進提高。二、向老師請教,要養(yǎng)成多想多問的習(xí)慣。我的辦公室在二樓二號,歡迎大家前來交流
㈣準備一本筆記本,作為自己的問題集。把平時自己不懂的和不大理解的還有易錯的記錄下來,并且要及時的消化,不懂的地方問老師。這是一個很好的辦法,到考試的時候就可以有重點、有針對性的自己復(fù)習(xí)了。我高中的時候就是采用這樣的方法把數(shù)學(xué)成績提高。
好的開始是成功的一半,新的學(xué)期開始了,請大家調(diào)整好自己的思想,找到學(xué)習(xí)的原動力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習(xí)慣;播種一種習(xí)慣,收獲一種性格;播種一種性格,收獲一種命運。愿每位同學(xué)都有個好的開始。
高中數(shù)學(xué)教案2
教學(xué)目標
1.理解的概念,掌握的通項公式,并能運用公式解決簡單的問題.
。1)正確理解的定義,了解公比的概念,明確一個數(shù)列是的限定條件,能根據(jù)定義判斷一個數(shù)列是,了解等比中項的概念;
。2)正確認識使用的表示法,能靈活運用通項公式求的首項、公比、項數(shù)及指定的項;
。3)通過通項公式認識的性質(zhì),能解決某些實際問題.
2.通過對的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì).
3.通過對概念的歸納,進一步培養(yǎng)學(xué)生嚴密的思維習(xí)慣,以及實事求是的科學(xué)態(tài)度.
教學(xué)建議
教材分析
。1)知識結(jié)構(gòu)
是另一個簡單常見的數(shù)列,研究內(nèi)容可與等差數(shù)列類比,首先歸納出的定義,導(dǎo)出通項公式,進而研究圖像,又給出等比中項的概念,最后是通項公式的應(yīng)用.
。2)重點、難點分析
教學(xué)重點是的定義和對通項公式的認識與應(yīng)用,教學(xué)難點在于通項公式的推導(dǎo)和運用.
、倥c等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項公式得出的特性,這些是教學(xué)的重點.
、陔m然在等差數(shù)列的學(xué)習(xí)中曾接觸過不完全歸納法,但對學(xué)生來說仍然不熟悉;在推導(dǎo)過程中,需要學(xué)生有一定的觀察分析猜想能力;第一項是否成立又須補充說明,所以通項公式的推導(dǎo)是難點.
③對等差數(shù)列、的綜合研究離不開通項公式,因而通項公式的靈活運用既是重點又是難點.
教學(xué)建議
(1)建議本節(jié)課分兩課時,一節(jié)課為的概念,一節(jié)課為通項公式的應(yīng)用.
。2)概念的引入,可給出幾個具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個等差數(shù)列和幾個混在一起給出,由學(xué)生將這些數(shù)列進行分類,有一種是按等差、等比來分的,由此對比地概括的定義.
。3)根據(jù)定義讓學(xué)生分析的公比不為0,以及每一項均不為0的特性,加深對概念的理解.
。4)對比等差數(shù)列的表示法,由學(xué)生歸納的各種表示法.啟發(fā)學(xué)生用函數(shù)觀點認識通項公式,由通項公式的.結(jié)構(gòu)特征畫數(shù)列的圖象.
。5)由于有了等差數(shù)列的研究經(jīng)驗,的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).
(6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.
教學(xué)設(shè)計示例
課題:的概念
教學(xué)目標
1.通過教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項公式.
2.使學(xué)生進一步體會類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.
3.培養(yǎng)學(xué)生勤于思考,實事求是的精神,及嚴謹?shù)目茖W(xué)態(tài)度.
教學(xué)重點,難點
重點、難點是的定義的歸納及通項公式的推導(dǎo).
教學(xué)用具
投影儀,多媒體軟件,電腦.
教學(xué)方法
討論、談話法.
教學(xué)過程
一、提出問題
給出以下幾組數(shù)列,將它們分類,說出分類標準.(幻燈片)
①-2,1,4,7,10,13,16,19,…
、8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
、243,81,27,9,3,1,,,…
、31,29,27,25,23,21,19,…
⑥1,-1,1,-1,1,-1,1,-1,…
、1,-10,100,-1000,10000,-100000,…
⑧0,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(可能按項與項之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為).
二、講解新課
請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題.假設(shè)每經(jīng)過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設(shè)開始有一個變形蟲,經(jīng)過一個單位時間它分裂為兩個變形蟲,經(jīng)過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù)這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——.(這里播放變形蟲分裂的多媒體軟件的第一步)
。ò鍟
1.的定義(板書)
根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出的定義,標注出重點詞語.
請學(xué)生指出②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是.學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例.而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng)時,數(shù)列既是等差又是,當(dāng)時,它只是等差數(shù)列,而不是.教師追問理由,引出對的認識:
2.對定義的認識(板書)
。1)的首項不為0;
。2)的每一項都不為0,即;
問題:一個數(shù)列各項均不為0是這個數(shù)列為的什么條件?
。3)公比不為0.
用數(shù)學(xué)式子表示的定義.
是①.在這個式子的寫法上可能會有一些爭議,如寫成,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為是?為什么不能?
式子給出了數(shù)列第項與第項的數(shù)量關(guān)系,但能否確定一個?(不能)確定一個需要幾個條件?當(dāng)給定了首項及公比后,如何求任意一項的值?所以要研究通項公式.
3.的通項公式(板書)
問題:用和表示第項.
、俨煌耆珰w納法
.
、诏B乘法
,…,,這個式子相乘得,所以.
。ò鍟1)的通項公式
得出通項公式后,讓學(xué)生思考如何認識通項公式.
。ò鍟2)對公式的認識
由學(xué)生來說,最后歸結(jié):
、俸瘮(shù)觀點;
②方程思想(因在等差數(shù)列中已有認識,此處再復(fù)習(xí)鞏固而已).
這里強調(diào)方程思想解決問題.方程中有四個量,知三求一,這是公式最簡單的應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓(xùn)練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.
三、小結(jié)
1.本節(jié)課研究了的概念,得到了通項公式;
2.注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;
3.用方程的思想認識通項公式,并加以應(yīng)用.
四、作業(yè)(略)
五、板書設(shè)計
1.等比數(shù)列的定義
2.對定義的認識
3.等比數(shù)列的通項公式
。1)公式
(2)對公式的認識
探究活動
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.
參考答案:
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度.如果紙再薄一些,比如紙厚0.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應(yīng)是粒,用計算器算一下吧(用對數(shù)算也行).
高中數(shù)學(xué)教案3
教學(xué)目標
1使學(xué)生理解本章的知識結(jié)構(gòu),并通過本章的知識結(jié)構(gòu)掌握本章的全部知識;
2對線段、射線、直線、角的概念及它們之間的關(guān)系有進一步的認識;
3掌握本章的全部定理和公理;
4理解本章的數(shù)學(xué)思想方法;
5了解本章的題目類型。
教學(xué)重點和難點
重點是理解本章的知識結(jié)構(gòu),掌握本章的全部定和公理;難點是理解本章的數(shù)學(xué)思想方法。
教學(xué)設(shè)計過程
一、本章的知識結(jié)構(gòu)
二、本章中的概念
1直線、射線、線段的概念。
2線段的中點定義。
3角的兩個定義。
4直角、平角、周角、銳角、鈍角的概念。
5互余與互補的角。
三、本章中的公理和定理
1直線的公理;線段的公理。
2補角和余角的性質(zhì)定理。
四、本章中的主要習(xí)題類型
1對直線、射線、線段的概念的理解。
例1下列說法中正確的是( )。
A延長射線OP B延長直線CD
C延長線段CD D反向延長直線CD
解:C因為射線和直線是可以向一方或兩方無限延伸的,所以任何延長射線或直線的說法都是錯誤的。而線段有兩個端點,可以向兩方延長。
例2如圖1-57中的線段共有多少條?
解:15條,它們是:線段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,F(xiàn)G。
2線段的和、差、倍、分。
例3已知線段AB,延長AB到C,使AC=2BC,反向延長AB到D使AD= BC,那么線段AD是線段AC的( )。
A.B. C. D.
解:B如圖1-58,因為AD是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。
例4如圖1-59,B為線段AC上的一點,AB=4cm,BC=3cm,M,N分別為AB,BC的中點,求MN的長。
解:因為AB=4,M是AB的`中點,所以MB=2,又因為N是BC的中點,所以BN=1.5。則MN=2+1.5=3.5
3角的概念性質(zhì)及角平分線。
例5如圖1-60,已知AOC是一條直線,OD是∠AOB的平分線,OE是∠BOC的平分線,求∠EOD的度數(shù)。
解:因為OD是∠AOB的平分線,所以∠BOD= ∠AOB;又因為OE是∠BOC的平分線,所以∠BOE= ∠BOC;又∠AOB+∠BOC=180°,
所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。
則∠EOD=90°。
例6如圖1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC與∠COB的度數(shù)的比是多少?
解:因為∠AOB=90°,又∠AOD=150°,所以∠BOD=60°。
又∠COD=90°,所以∠COB=30°。
則∠AOC=60°,(同角的余角相等)
∠AOC與∠COB的度數(shù)的比是2∶1。
4互余與互補角的性質(zhì)。
例7如圖1-62,直線AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度數(shù)。
解:因為COD為直線,∠BOE=90°,∠BOD=45°,
所以∠COE=180°-90°-45°=45°
又AOB為直線,∠BOE=90°,∠COE=45°
故∠COA=180°-90°-45°=45°,
而AOB為直線,∠BOD=45°,
因此∠AOD=180°-45°=135°。
例8一個角是另一個角的3倍,且小有的余角與大角的余角之差為20°,求這兩個角的度數(shù)。
解:設(shè)第一個角為x°,則另一個角為3x°,
依題義列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。
答:一個角為10°,另一個角為30°。
5度分秒的換算及和、差、倍、分的計算。
例9 (1)將4589°化成度、分、秒的形式。
(2)將80°34′45″化成度。
(3)計算:(36°55′40″-23°56′45″)。
解:(1)45°53′24″。
(2)約為8058°。
(3)約為9°44′11″(第一步,做減法后得12°58′55″;再做乘法后得36°174′165″,可以先不進位,做除法后得9°44′11″)
五、本章中所學(xué)到的數(shù)學(xué)思想
1運動變化的觀點:幾何圖形不是孤立和靜止的,也應(yīng)看作不斷發(fā)展和變化的,如線段向一個方向延長,就發(fā)展成為射線;射線向另一方向延長就發(fā)展成直線。又如射線饒它的端點旋轉(zhuǎn)就形成角;角的終邊不斷旋轉(zhuǎn)就變化成直角、平角和周角。從圖形的運動中可以看到變化,從變化中看到聯(lián)系和區(qū)別及特性。
2數(shù)形結(jié)合的思想:在幾何的知識中經(jīng)常遇到計算問題,對形的研究離不開數(shù)。正如數(shù)學(xué)家華羅庚所說:“數(shù)缺形時少直觀,形缺數(shù)時難如微”。本章的知識中,將線段的長度用數(shù)量表示,利用方程的方法解決余角與補角的問題。因此我們對幾何的學(xué)習(xí)不能與代數(shù)的學(xué)習(xí)截然分開,在形的問題難以解決時,發(fā)揮數(shù)的功能,在數(shù)的問題遇到困難時,畫出與它相關(guān)的圖形,都會給問題的解決帶來新的思路。從幾何的起始課,就注意數(shù)形結(jié)合,就會養(yǎng)成良好的思維習(xí)慣。
3聯(lián)系實際,從實際事物中抽象出數(shù)學(xué)模型。數(shù)學(xué)的產(chǎn)生來源于生產(chǎn)和生活實踐,因此學(xué)習(xí)數(shù)學(xué)不能脫離實際生活,尤其是幾乎何的學(xué)習(xí)更離不開實際生活。一方面要讓學(xué)生知道本章的主要內(nèi)容是線和角,都在生活中有大量的原型存在,另一方面又要引導(dǎo)學(xué)生將所學(xué)的知識去解決某些簡單的實際問題,這才是理論聯(lián)系實際的觀點。
六、本章的疑點和誤點分析
概念在應(yīng)用中的混淆。
例10判斷正誤:
(1)在∠AOB的邊OA的延長線上取一點D。
(2)大于90°的角是鈍角。
(3)任何一個角都可以有余角。
(4)∠A是銳角,則∠A的所有余角都相等。
(5)兩個銳角的和一定小于平角。
(6)直線MN是平角。
(7)互補的兩個角的和一定等于平角。
(8)如果一個角的補角是銳角,那么這個角就沒有余角。
(9)鈍角一定大于它的補角。
(10)經(jīng)過三點一定可以畫一條直線。
解:(1)錯。因為角的兩邊是射線,而射線是可以向一方無限延伸的,所以就不能再說射線的延長線了。
(2)錯。鈍角的定義是:大于直角且小于平角的角,叫做鈍角。
(3)錯。余角的定義是:如果兩個角的和是一個直角,這兩個角互為余角。因此大于直角的角沒有余角。
(4)對.∠A的所有余角都是90°-∠A。
(5)對.若∠A<90°,∠B<90°則∠A+∠B<90°+90°=180°.
(6)錯。平角是一個角就要有頂點,而直線上沒有表示平角頂點的點。如果在直線上標出表示角的頂點的點,就可以了。
(7)對。符合互補的角的定義。
(8)對。如果一個角的補角是銳角,那么這個角一定是鈍角,而鈍角是沒有余角的。
(9)對。因為鈍角的補角是銳角,鈍角一定大于銳角。
(10)錯。這個題應(yīng)該分情況討論:如果這三點在同一條直線上,這個結(jié)論是正確的。如果這三個點不在同一條直線上,那么過這三個點就不能畫一條直線。
板書設(shè)計
回顧與反思
(一)知識結(jié)構(gòu)(四)主要習(xí)題類型(五)本章的數(shù)學(xué)思想
略例1 1
· 2
(二)本章概念· 3
略· (六)疑誤點分析
(三)本章的公理和定理·
例9
高中數(shù)學(xué)教案4
1.課題
填寫課題名稱(高中代數(shù)類課題)
2.教學(xué)目標
(1)知識與技能:
通過本節(jié)課的學(xué)習(xí),掌握......知識,提高學(xué)生解決實際問題的能力;
(2)過程與方法:
通過......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力;
(3)情感態(tài)度與價值觀:
通過本節(jié)課的學(xué)習(xí),增強學(xué)生的學(xué)習(xí)興趣,將數(shù)學(xué)應(yīng)用到實際生活中,增加學(xué)生數(shù)學(xué)學(xué)習(xí)的樂趣。
3.教學(xué)重難點
(1)教學(xué)重點:本節(jié)課的知識重點
(2)教學(xué)難點:易錯點、難以理解的知識點
4.教學(xué)方法(一般從中選擇3個就可以了)
(1)討論法
(2)情景教學(xué)法
(3)問答法
(4)發(fā)現(xiàn)法
(5)講授法
5.教學(xué)過程
(1)導(dǎo)入
簡單敘述導(dǎo)入課題的方式和方法(例:復(fù)習(xí)、類比、情境導(dǎo)出本節(jié)課的課題)
(2)新授課程(一般分為三個小步驟)
①簡單講解本節(jié)課基礎(chǔ)知識點(例:奇函數(shù)的定義)。
②歸納總結(jié)該課題中的重點知識內(nèi)容,尤其對該注意的一些情況設(shè)置易錯點,進行強調(diào)?梢栽O(shè)計分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點。設(shè)置定義域不關(guān)于原點對稱的函數(shù)是否為奇函數(shù)的易錯點)。
、弁卣寡由,將所學(xué)知識拓展延伸到實際題目中,去解決實際生活中的問題。
(在新授課里面一定要表下出講課的大體流程,但是不必太過詳細。)
(3)課堂小結(jié)
教師提問,學(xué)生回答本節(jié)課的收獲。
(4)作業(yè)提高
布置作業(yè)(盡量與實際生活相聯(lián)系,有所創(chuàng)新)。
6.教學(xué)板書
2.高中數(shù)學(xué)教案格式
一.課題(說明本課名稱)
二.教學(xué)目的(或稱教學(xué)要求,或稱教學(xué)目標,說明本課所要完成的教學(xué)任務(wù))
三.課型(說明屬新授課,還是復(fù)習(xí)課)
四.課時(說明屬第幾課時)
五.教學(xué)重點(說明本課所必須解決的關(guān)鍵性問題)
六.教學(xué)難點(說明本課的學(xué)習(xí)時易產(chǎn)生困難和障礙的知識傳授與能力培養(yǎng)點)
七.教學(xué)方法要根據(jù)學(xué)生實際,注重引導(dǎo)自學(xué),注重啟發(fā)思維
八.教學(xué)過程(或稱課堂結(jié)構(gòu),說明教學(xué)進行的內(nèi)容、方法步驟)
九.作業(yè)處理(說明如何布置書面或口頭作業(yè))
十.板書設(shè)計(說明上課時準備寫在黑板上的內(nèi)容)
十一.教具(或稱教具準備,說明輔助教學(xué)手段使用的工具)
十二.教學(xué)反思:(教者對該堂課教后的感受及學(xué)生的收獲、改進方法)
3.高中數(shù)學(xué)教案范文
【教學(xué)目標】
1.知識與技能
(1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列:
(2)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程:
(3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價值觀
通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的'學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好習(xí)慣。
【教學(xué)重點】
、俚炔顢(shù)列的概念;
②等差數(shù)列的通項公式
【教學(xué)難點】
、倮斫獾炔顢(shù)列“等差”的特點及通項公式的含義;
②等差數(shù)列的通項公式的推導(dǎo)過程.
【學(xué)情分析】
我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
【設(shè)計思路】
1、教法
、賳l(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.
、诜纸M討論法:有利于學(xué)生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.
、壑v練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點.
2、學(xué)法
引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認識多元的推導(dǎo)思維方法.
【教學(xué)過程】
一、創(chuàng)設(shè)情境,引入新課
1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2、水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?
3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊涵著三列數(shù).
學(xué)生:
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
(設(shè)置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.
二、觀察歸納,形成定義
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?
教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.
(設(shè)計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓。骸皬牡诙椘,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準確表達.)
三、舉一反三,鞏固定義
1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學(xué)生思考回答.教師訂正并強調(diào)求公差應(yīng)注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0.
(設(shè)計意圖:強化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).
2、思考4:設(shè)數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設(shè)計意圖:強化等差數(shù)列的證明定義法)
四、利用定義,導(dǎo)出通項
1、已知等差數(shù)列:8,5,2,…,求第200項?
2、已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進行具體評價、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.
(設(shè)計意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵學(xué)生自主解答,培養(yǎng)學(xué)生運算能力)
五、應(yīng)用通項,解決問題
1、判斷100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?
2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差數(shù)列3,7,11,…的第4項和第10項
教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.
學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式
(設(shè)計意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數(shù)列問題.)
六、反饋練習(xí):教材13頁練習(xí)1
七、歸納總結(jié):
1、一個定義:
等差數(shù)列的定義及定義表達式
2、一個公式:
等差數(shù)列的通項公式
3、二個應(yīng)用:
定義和通項公式的應(yīng)用
教師:讓學(xué)生思考整理,找?guī)讉代表發(fā)言,最后教師給出補充
(設(shè)計意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)
【設(shè)計反思】
本設(shè)計從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,增強學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率.
高中數(shù)學(xué)教案5
。ㄒ唬┙虒W(xué)具準備
直尺,投影儀.
(二)教學(xué)目標
1.掌握,的定義域、值域、最值、單調(diào)區(qū)間.
2.會求含有、的三角式的定義域.
。ㄈ┙虒W(xué)過程
1.設(shè)置情境
研究函數(shù)就是要討論一些性質(zhì),,是函數(shù),我們當(dāng)然也要探討它的一些屬性.本節(jié)課,我們就來研究正弦函數(shù)、余弦函數(shù)的最基本的兩條性質(zhì).
2.探索研究
師:同學(xué)們回想一下,研究一個函數(shù)常要研究它的哪些性質(zhì)?
生:定義域、值域,單調(diào)性、奇偶性、等等.
師:很好,今天我們就來探索,兩條最基本的性質(zhì)定義域、值域.(板書課題正、余弦函數(shù)的定義域、值域.)
師:請同學(xué)看投影,大家仔細觀察一下正弦、余弦曲線的圖像.
師:請同學(xué)思考以下幾個問題:
。1)正弦、余弦函數(shù)的定義域是什么?
。2)正弦、余弦函數(shù)的'值域是什么?
。3)他們最值情況如何?
。4)他們的正負值區(qū)間如何分?
。5)的解集如何?
師生一起歸納得出:
。1)正弦函數(shù)、余弦函數(shù)的定義域都是.
。2)正弦函數(shù)、余弦函數(shù)的值域都是即,,稱為正弦函數(shù)、余弦函數(shù)的有界性.
。3)取最大值、最小值情況:
正弦函數(shù),當(dāng)時,()函數(shù)值取最大值1,當(dāng)時,()函數(shù)值取最小值-1.
余弦函數(shù),當(dāng),()時,函數(shù)值取最大值1,當(dāng),()時,函數(shù)值取最小值-1.
。4)正負值區(qū)間:
。ǎ
。5)零點:()
。ǎ
3.例題分析
【例1】求下列函數(shù)的定義域、值域:
。1);(2);(3).
解:(1),
。2)由()
又∵,∴
∴定義域為(),值域為.
。3)由(),又由
∴
∴定義域為(),值域為.
指出:求值域應(yīng)注意用到或有界性的條件.
【例2】求下列函數(shù)的最大值,并求出最大值時的集合:
。1),;(2),;
(3)(4).
解:(1)當(dāng),即()時,取得最大值
∴函數(shù)的最大值為2,取最大值時的集合為.
。2)當(dāng)時,即()時,取得最大值.
∴函數(shù)的最大值為1,取最大值時的集合為.
。3)若,,此時函數(shù)為常數(shù)函數(shù).
若時,∴時,即()時,函數(shù)取最大值,
∴時函數(shù)的最大值為,取最大值時的集合為.
。4)若,則當(dāng)時,函數(shù)取得最大值.
若,則,此時函數(shù)為常數(shù)函數(shù).
若,當(dāng)時,函數(shù)取得最大值.
∴當(dāng)時,函數(shù)取得最大值,取得最大值時的集合為;當(dāng)時,函數(shù)取得最大值,取得最大值時的集合為,當(dāng)時,函數(shù)無最大值.
指出:對于含參數(shù)的最大值或最小值問題,要對或的系數(shù)進行討論.
思考:此例若改為求最小值,結(jié)果如何?
【例3】要使下列各式有意義應(yīng)滿足什么條件?
(1);(2).
解:(1)由,
∴當(dāng)時,式子有意義.
。2)由,即
∴當(dāng)時,式子有意義.
4.演練反饋(投影)
(1)函數(shù),的簡圖是()
。2)函數(shù)的最大值和最小值分別為()
A.2,-2 B.4,0 C.2,0 D.4,-4
。3)函數(shù)的最小值是()
A.B.-2 C.D.
。4)如果與同時有意義,則的取值范圍應(yīng)為()
A.B.C.D.或
。5)與都是增函數(shù)的區(qū)間是()
A.,B.,
C.,D.,
(6)函數(shù)的定義域________,值域________,時的集合為_________.
參考答案:1.B 2.B 3.A 4.C 5.D
6.;;
5.總結(jié)提煉
。1),的定義域均為.
。2)、的值域都是
。3)有界性:
(4)最大值或最小值都存在,且取得極值的集合為無限集.
。5)正負敬意及零點,從圖上一目了然.
。6)單調(diào)區(qū)間也可以從圖上看出.
。ㄋ模┌鍟O(shè)計
1.定義域
2.值域
3.最值
4.正負區(qū)間
5.零點
例1
例2
例3
課堂練習(xí)
課后思考題:求函數(shù)的最大值和最小值及取最值時的集合
提示:
高中數(shù)學(xué)教案6
一、教學(xué)目標
【知識與技能】
在掌握圓的標準方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。
【過程與方法】
通過對方程x+y+Dx+Ey+F=0表示圓的的.條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。
【情感態(tài)度與價值觀】
滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵學(xué)生創(chuàng)新,勇于探索。
二、教學(xué)重難點
【重點】
掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。
【難點】
二元二次方程與圓的一般方程及標準圓方程的關(guān)系。
三、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)舊知,引出課題
1、復(fù)習(xí)圓的標準方程,圓心、半徑。
2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
高中數(shù)學(xué)教案7
教學(xué)目標:
1、理解并掌握曲線在某一點處的切線的概念;
2、理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法;
3、理解切線概念實際背景,培養(yǎng)學(xué)生解決實際問題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化
問題的能力及數(shù)形結(jié)合思想。
教學(xué)重點:
理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法。
教學(xué)難點:
用“無限逼近”、“局部以直代曲”的思想理解某一點處切線的`斜率。
教學(xué)過程:
一、問題情境
1、問題情境。
如何精確地刻畫曲線上某一點處的變化趨勢呢?
如果將點P附近的曲線放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去有點像是直線。
如果將點P附近的曲線再放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去幾乎成了直線。事實上,如果繼續(xù)放大,那么曲線在點P附近將逼近一條確定的直線,該直線是經(jīng)過點P的所有直線中最逼近曲線的一條直線。
因此,在點P附近我們可以用這條直線來代替曲線,也就是說,點P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。
2、探究活動。
如圖所示,直線l1,l2為經(jīng)過曲線上一點P的兩條直線,
。1)試判斷哪一條直線在點P附近更加逼近曲線;
。2)在點P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?
。3)在點P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?
二、建構(gòu)數(shù)學(xué)
切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點,直線PQ稱為曲線的割線。 隨著點Q沿曲線C向點P運動,割線PQ在點P附近逼近曲線C,當(dāng)點Q無限逼近點P時,直線PQ最終就成為經(jīng)過點P處最逼近曲線的直線l,這條直線l也稱為曲線在點P處的切線。這種方法叫割線逼近切線。
思考:如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?
三、數(shù)學(xué)運用
例1 試求在點(2,4)處的切線斜率。
解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),
則割線PQ的斜率為:
當(dāng)Q沿曲線逼近點P時,割線PQ逼近點P處的切線,從而割線斜率逼近切線斜率;
當(dāng)Q點橫坐標無限趨近于P點橫坐標時,即xQ無限趨近于2時,kPQ無限趨近于常數(shù)4。
從而曲線f(x)=x2在點(2,4)處的切線斜率為4。
解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:
當(dāng)?x無限趨近于0時,kPQ無限趨近于常數(shù)4,從而曲線f(x)=x2,在點(2,4)處的切線斜率為4。
練習(xí) 試求在x=1處的切線斜率。
解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:
當(dāng)?x無限趨近于0時,kPQ無限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。
小結(jié) 求曲線上一點處的切線斜率的一般步驟:
。1)找到定點P的坐標,設(shè)出動點Q的坐標;
。2)求出割線PQ的斜率;
。3)當(dāng)時,割線逼近切線,那么割線斜率逼近切線斜率。
思考 如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?
解 設(shè)
所以,當(dāng)無限趨近于0時,無限趨近于點處的切線的斜率。
變式訓(xùn)練
1。已知,求曲線在處的切線斜率和切線方程;
2。已知,求曲線在處的切線斜率和切線方程;
3。已知,求曲線在處的切線斜率和切線方程。
課堂練習(xí)
已知,求曲線在處的切線斜率和切線方程。
四、回顧小結(jié)
1、曲線上一點P處的切線是過點P的所有直線中最接近P點附近曲線的直線,則P點處的變化趨勢可以由該點處的切線反映(局部以直代曲)。
2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點處的切線斜率和方程。
五、課外作業(yè)
高中數(shù)學(xué)教案8
猴子搬香蕉
一個小猴子邊上有100根香蕉,它要走過50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請問它最多能把多少根香蕉搬到家里?
解答:
100只香蕉分兩次,一次運50只,走1米,再回去搬另外50只,這樣走了1米的時候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時候剩下46+48只;...到16米的時候剩下(50-2×16)+(50-16)=18+34只;17米的時候剩下16+33只,共49只;然后把剩下的這49只一次運回去,要走剩下的33米,每米吃一個,到家還有16個香蕉。
河岸的距離
兩艘輪船在同一時刻駛離河的兩岸,一艘從A駛往B,另一艘從B開往A,其中一艘開得比另一艘快些,因此它們在距離較近的岸500公里處相遇。到達預(yù)定地點后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問河有多寬?
解答:
當(dāng)兩艘渡輪在x點相遇時,它們距A岸500公里,此時它們走過的距離總和等于河的寬度。當(dāng)它們雙方抵達對岸時,走過的總長度
等于河寬的兩倍。在返航中,它們在z點相遇,這時兩船走過的距離之和等于河寬的三倍,所以每一艘渡輪現(xiàn)在所走的距離應(yīng)該等于它們第一次相遇時所走的距離的三倍。在兩船第一次相遇時,有一艘渡輪走了500公里,所以當(dāng)它到達z點時,已經(jīng)走了三倍的距離,即1500公里,這個距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時間對答案毫無影響。
變量交換
不使用任何其他變量,交換a,b變量的值?
分析與解答
a = a+b
b = a-b
a= a-b
步行時間
某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區(qū)一個小鎮(zhèn)的附近。他每次下班以后都是乘同一次市郊火車回小鎮(zhèn)。小鎮(zhèn)車站離家還有一段距離,他的私人司機總是在同一時刻從家里開出轎車,去小鎮(zhèn)車站接總裁回家。由于火車與轎車都十分準時,因此,火車與轎車每次都是在同一時刻到站。
有一次,司機比以往遲了半個小時出發(fā)。溫斯頓到站后,找不到
他的車子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車正風(fēng)馳電掣而來,立即招手示意停車,跳上車子后也顧不上罵司機,命其馬上掉頭往回開;氐郊抑,果不出所料,他老婆大發(fā)雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長時間?
解答:
假如溫斯頓一直在車站等候,那么由于司機比以往晚了半小時出發(fā),因此,也將晚半小時到達車站。也就是說,溫斯頓將在車站空等半小時,等他的轎車到達后坐車回家,從而他將比以往晚半小時到家。而現(xiàn)在溫斯頓只比平常晚22分鐘到家,這縮短下來的8分鐘是如果總裁在火車站死等的話,司機本來要花在從現(xiàn)在遇到溫斯頓總裁的地點到火車站再回到這個地點上的時間。這意味著,如果司機開車從現(xiàn)在遇到總裁的地點趕到火車站,單程所花的時間將為4分鐘。因此,如果溫斯頓等在火車站,再過4分鐘,他的轎車也到了。也就是說,他如果等在火車站,那么他也已經(jīng)等了30-4=26分鐘了。但是懼內(nèi)的溫斯頓總裁畢竟沒有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。
因此,溫斯頓步行了26分鐘。
付清欠款
有四個人借錢的數(shù)目分別是這樣的:阿伊庫向貝爾借了10美元;
貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫借了40美元。碰巧四個人都在場,決定結(jié)個賬,請問最少只需要動用多少美金就可以將所有欠款一次付清?
解答:
貝爾、查理、迪克各自拿出10美元給阿伊庫就可解決問題了。這樣的話只動用了30美元。最笨的辦法就是用100美元來一一付清。
貝爾必須拿出10美元的欠額,查理和迪克也一樣;而阿伊庫則要收回借出的30美元。再復(fù)雜的`問題只要有條理地分析就會很簡單。養(yǎng)成經(jīng)常性地歸納整理、摸索實質(zhì)的好習(xí)慣。
一美元紙幣
注:美國貨幣中的硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。
一家小店剛開始營業(yè),店堂中只有三位男顧客和一位女店主。當(dāng)這三位男士同時站起來付帳的時候,出現(xiàn)了以下的情況:
。1)這四個人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。
。2)這四人中沒有一人能夠兌開任何一枚硬幣。
。3)一個叫盧的男士要付的賬單款額最大,一位叫莫的男士要
付的帳單款額其次,一個叫內(nèi)德的男士要付的賬單款額最小。
。4)每個男士無論怎樣用手中所持的硬幣付賬,女店主都無法找清零錢。
。5)如果這三位男士相互之間等值調(diào)換一下手中的硬幣,則每個人都可以付清自己的賬單而無需找零。
(6)當(dāng)這三位男士進行了兩次等值調(diào)換以后,他們發(fā)現(xiàn)手中的硬幣與各人自己原先所持的硬幣沒有一枚面值相同。
。7)隨著事情的進一步發(fā)展,又出現(xiàn)如下的情況:
。8)在付清了賬單而且有兩位男士離開以后,留下的男士又買了一些糖果。這位男士本來可以用他手中剩下的硬幣付款,可是女店主卻無法用她現(xiàn)在所持的硬幣找清零錢。于是,這位男士用1美元的紙幣付了糖果錢,但是現(xiàn)在女店主不得不把她的全部硬幣都找給了他。
現(xiàn)在,請你不要管那天女店主怎么會在找零上屢屢遇到麻煩,這三位男士中誰用1美元的紙幣付了糖果錢?
解答:
對題意的以下兩點這樣理解:
。2)中不能換開任何一個硬幣,指的是如果任何一個人不能有2個5分,否則他能換1個10分硬幣。
。6)中指如果A,B換過,并且A,C換過,這就是兩次交換。
高中數(shù)學(xué)教案9
一、教材分析
1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個空間圖形!岸娼恰笔侨私贪妗稊(shù)學(xué)》第二冊(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學(xué)生進一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對學(xué)生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
2、教學(xué)目標:
知識目標:(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。
。2)進一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。
能力目標:(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過對圖形的觀察、分析、比較和操作來強化學(xué)生的動手操作能力。
德育目標:(1)使學(xué)生認識到數(shù)學(xué)知識來自實踐,并服務(wù)于實踐,增強學(xué)生應(yīng)用數(shù)學(xué)的意識(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點。
情感目標:在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評價,拉近學(xué)生之間、師生之間的情感距離。
3、重點、難點:
重點:“二面角”和“二面角的平面角”的概念
難點:“二面角的平面角”概念的形成過程
二、教法分析
1、教學(xué)方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導(dǎo)、活動探究和類比發(fā)現(xiàn)法,在形成技能時以訓(xùn)練法、探究研討法為主。
。、教學(xué)控制與調(diào)節(jié)的'措施:本節(jié)課由于充分運用了多媒體和實物教具,預(yù)計學(xué)生對二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實際情況,估計二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。
3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強直觀教學(xué),還要預(yù)先做好一些二面角的模型。
三、學(xué)法指導(dǎo)
1、樂學(xué):在整個學(xué)習(xí)過程中學(xué)生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。
2、學(xué)會:在掌握基礎(chǔ)知識的同時,學(xué)生要注意領(lǐng)會化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運用,學(xué)會建立完善的認知結(jié)構(gòu)。
3、會學(xué):通過自己親身參與,學(xué)生要領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法,從而既學(xué)到知識,又學(xué)會創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。
四、教學(xué)過程
心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時,就會對概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。
。ㄒ唬、二面角
1、揭示概念產(chǎn)生背景。
問題情境1、在平面幾何中“角”是怎樣定義的?
問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?
問題情境3、運用多媒體和身邊的實例,展示我們遇到的另一種空間的角——二面角(板書課題)。
通過這三個問題,打開了學(xué)生的原有認知結(jié)構(gòu),為知識的創(chuàng)新做好了準備;同時也讓學(xué)生領(lǐng)會到,二面角這一概念的產(chǎn)生是因為它與我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過程。
問題情境4、那么,應(yīng)該如何定義二面角呢?
創(chuàng)設(shè)這個問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學(xué)生說,對于學(xué)生的創(chuàng)新意識和創(chuàng)新結(jié)果,教師要給與積極的評價。
問題情境5、同學(xué)們能舉出一些二面角的實例嗎?通過實際運用,可以促使學(xué)生更加深刻地理解概念。
(二)、二面角的平面角
1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個旋轉(zhuǎn)量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面
與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,我們有必要來研究二面角的度量問題。
問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。
2、展現(xiàn)概念形成過程
(1)、類比。教師啟發(fā),尋找類比聯(lián)想的對象。
問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,電腦演示以提高效率。
問題情境8、兩定義的共同點是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個角是唯一確定的。
問題情境9、這個平面的角的頂點及兩邊是如何確定的?
。2)、提出猜想:二面角的大小也可通過平面的角來定義。對學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識和習(xí)慣,這對強化他們的創(chuàng)新意識大有幫助。
問題情境10、那么,這個角的頂點及兩邊應(yīng)如何確定呢?生:頂點放在棱上,兩邊分別放在兩個面內(nèi)。這也是學(xué)生直覺思維的結(jié)果。
。3)、探索實驗。通過實驗,激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動手操作能力。
(4)、繼續(xù)探索,得到定義。
問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。
。5)、自我驗證:要求學(xué)生閱讀課本上的定義。并說明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。
(三)、二面角及其平面角的畫法
主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。
。ㄋ模、范例分析
為鞏固學(xué)生所學(xué)知識,由于時間的關(guān)系設(shè)置了一道例題。來源于實際生活,不但培養(yǎng)了學(xué)生分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會到數(shù)學(xué)概念來自生活實際,并服務(wù)于生活實際,從而增強他們應(yīng)用數(shù)學(xué)的意識。
例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點間的距離。
分析:涉及二面角的計算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角?勺寣W(xué)生先做,為調(diào)動學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機會。教師講評時強調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。
變式訓(xùn)練:圖中共有幾個二面角?能求出它們的大小嗎?根據(jù)課堂實際情況,本題的變式訓(xùn)練也可作為課后思考題。
題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。
。2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)
。ㄎ澹、練習(xí)、小結(jié)與作業(yè)
練習(xí):習(xí)題9.7的第3題
小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時要求學(xué)生對本節(jié)課的學(xué)習(xí)方法進行總結(jié),領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法。
作業(yè):習(xí)題9.7的第4題
思考題:見例題
五、板書設(shè)計(見課件)
以上是我對《二面角》授課的初步設(shè)想,不足之處,懇請大家批評指正,謝謝!
高中數(shù)學(xué)教案10
教學(xué)目標
(1)了解線性規(guī)劃的意義以及線性約束條件、線性目標函數(shù)、線性規(guī)化問題、可行解、可行域以及最優(yōu)解等基本概念;
(2)了解線性規(guī)劃問題的圖解法,并能應(yīng)用它解決一些簡單的實際問題;
。3)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生“建!焙徒鉀Q實際問題的能力;
。4)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和“用數(shù)學(xué)”的意識,激勵學(xué)生勇于創(chuàng)新.
重點難點
理解二元一次不等式表示平面區(qū)域是教學(xué)重點。
如何擾實際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答是教學(xué)難點。
教學(xué)步驟
(一)引入新課
我們已研究過以二元一次不等式組為約束條件的二元線性目標函數(shù)的`線性規(guī)劃問題。那么是否有多個兩個變量的線性規(guī)劃問題呢?又什么樣的問題不用線性規(guī)劃知識來解決呢?
高中數(shù)學(xué)教案11
課題:
等比數(shù)列的概念
教學(xué)目標
1、通過教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項公式、
2、使學(xué)生進一步體會類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、
3、培養(yǎng)學(xué)生勤于思考,實事求是的精神,及嚴謹?shù)目茖W(xué)態(tài)度、
教學(xué)重點,難點
重點、難點是等比數(shù)列的定義的歸納及通項公式的推導(dǎo)、
教學(xué)用具
投影儀,多媒體軟件,電腦、
教學(xué)方法
討論、談話法、
教學(xué)過程
一、提出問題
給出以下幾組數(shù)列,將它們分類,說出分類標準、(幻燈片)
、佟2,1,4,7,10,13,16,19,…
、8,16,32,64,128,256,…
、1,1,1,1,1,1,1,…
、243,81,27,9,3,1,,,…
⑤31,29,27,25,23,21,19,…
、1,—1,1,—1,1,—1,1,—1,…
、1,—10,100,—1000,10000,—100000,…
⑧0,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(可能按項與項之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列)、
二、講解新課
請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題、假設(shè)每經(jīng)過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設(shè)開始有一個變形蟲,經(jīng)過一個單位時間它分裂為兩個變形蟲,經(jīng)過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù)
這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列、(這里播放變形蟲分裂的多媒體軟件的第一步)
等比數(shù)列(板書)
1、等比數(shù)列的定義(板書)
根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出等比數(shù)列的定義,標注出重點詞語、
請學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例、而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時,數(shù)列既是等差又是等比數(shù)列,當(dāng)時,它只是等差數(shù)列,而不是等比數(shù)列、教師追問理由,引出對等比數(shù)列的認識:
2、對定義的認識(板書)
。1)等比數(shù)列的首項不為0;
。2)等比數(shù)列的每一項都不為0,即
問題:一個數(shù)列各項均不為0是這個數(shù)列為等比數(shù)列的什么條件?
。3)公比不為0、
用數(shù)學(xué)式子表示等比數(shù)列的定義、
是等比數(shù)列
、佟⒃谶@個式子的寫法上可能會有一些爭議,如寫成
,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為
是等比數(shù)列?為什么不能?式子給出了數(shù)列第項與第
項的數(shù)量關(guān)系,但能否確定一個等比數(shù)列?(不能)確定一個等比數(shù)列需要幾個條件?當(dāng)給定了首項及公比后,如何求任意一項的`值?所以要研究通項公式、
3、等比數(shù)列的通項公式(板書)
問題:用和表示第項
、俨煌耆珰w納法
②疊乘法,…,,這個式子相乘得,所以(板書)
。1)等比數(shù)列的通項公式得出通項公式后,讓學(xué)生思考如何認識通項公式、(板書)
。2)對公式的認識
由學(xué)生來說,最后歸結(jié):
①函數(shù)觀點;
、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認識,此處再復(fù)習(xí)鞏固而已)、
這里強調(diào)方程思想解決問題、方程中有四個量,知三求一,這是公式最簡單的應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題)、解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓(xùn)練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。
三、小結(jié)
1、本節(jié)課研究了等比數(shù)列的概念,得到了通項公式;
2、注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;
3、用方程的思想認識通項公式,并加以應(yīng)用。
探究活動
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。
參考答案:
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應(yīng)是粒,用計算器算一下吧(對數(shù)算也行)。
高中數(shù)學(xué)教案12
一、教材分析:
集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
二、目標分析:
教學(xué)重點。難點
重點:集合的含義與表示方法。
難點:表示法的恰當(dāng)選擇。
教學(xué)目標
1.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;
(2)知道常用數(shù)集及其專用記號;
(3)了解集合中元素的確定性。互異性。無序性;
(4)會用集合語言表示有關(guān)數(shù)學(xué)對象;
2.過程與方法
(1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。
(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識。
3.情感。態(tài)度與價值觀
使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性。
三、教法分析
1.教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而更好地完成本節(jié)課的教學(xué)目標。
2.教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué)。
四。過程分析
(一)創(chuàng)設(shè)情景,揭示課題
1.教師首先提出問題:
(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。
(2)問題:像“家庭”、“學(xué)!、“班級”等,有什么共同特征?
引導(dǎo)學(xué)生互相交流。與此同時,教師對學(xué)生的活動給予評價。
2.活動:
(1)列舉生活中的集合的例子;
(2)分析、概括各實例的共同特征
由此引出這節(jié)要學(xué)的內(nèi)容。
設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊
(二)研探新知,建構(gòu)概念
1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:
(1)1—20以內(nèi)的所有質(zhì)數(shù);
(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國;
(4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體。
2.教師組織學(xué)生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義。一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素。
4.教師指出:集合常用大寫字母A,B,C,D表示,元素常用小寫字母a,b,c,d表示。
設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性、互異性和無序性。只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等。
2.教師組織引導(dǎo)學(xué)生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);
(2)我國的小河流。讓學(xué)生充分發(fā)表自己的建解。
3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由。教師對學(xué)生的學(xué)習(xí)活動給予及時的評價。
4.教師提出問題,讓學(xué)生思考
b是(1)如果用A表示高—(3)班全體學(xué)生組成的集合,用a表示高一(3)班的一位同學(xué),高一(4)班的一位同學(xué),那么a,b與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。
如果a是集合A的元素,就說a屬于集合A
如果a不是集合A的`元素,就說a不屬于集合A
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國。日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示。
(3)讓學(xué)生完成教材第6頁練習(xí)第1題。
5.教師引導(dǎo)學(xué)生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號。并讓學(xué)生完成習(xí)題1.1A組第1題。
6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考。討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言。列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉ǎ?/p>
使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學(xué)習(xí)
(1)用自然語言描述集合{1,3,5,7,9};
(2)用例舉法表示集合A
(3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題。
設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結(jié),布置作業(yè)
1.小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題:
本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?
2.你認為學(xué)習(xí)集合有什么意義?
3.選擇集合的表示法時應(yīng)注意些什么?
設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):
1.課后書面作業(yè):第13頁習(xí)題1.1A組第4題
2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材。
高中數(shù)學(xué)教案13
一、預(yù)習(xí)目標
預(yù)習(xí)《平面向量應(yīng)用舉例》,體會向量是一種處理幾何問題、物理問題等的工具,建立實際問題與向量的聯(lián)系。
二、預(yù)習(xí)內(nèi)容
閱讀課本內(nèi)容,整理例題,結(jié)合向量的運算,解決實際的幾何問題、物理問題。另外,在思考一下幾個問題:
1、例1如果不用向量的方法,還有其他證明方法嗎?
2、利用向量方法解決平面幾何問題的“三步曲”是什么?
3、例3中,
、艦楹沃禃r,|F1|最小,最小值是多少?
、苵F1|能等于|G|嗎?為什么?
三、提出疑惑
同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請把它填在下面的表格中疑惑點疑惑內(nèi)容。
課內(nèi)探究學(xué)案
一、學(xué)習(xí)內(nèi)容
1、運用向量的有關(guān)知識(向量加減法與向量數(shù)量積的運算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問題。
2、運用向量的有關(guān)知識解決簡單的物理問題。
二、學(xué)習(xí)過程
探究一:
。1)向量運算與幾何中的結(jié)論"若,則,且所在直線平行或重合"相類比,你有什么體會?
(2)舉出幾個具有線性運算的幾何實例。
例1、證明:平行四邊形兩條對角線的平方和等于四條邊的平方和。
已知:平行四邊形ABCD。
求證:
試用幾何方法解決這個問題,利用向量的方法解決平面幾何問題的“三步曲”?
(1)建立平面幾何與向量的`聯(lián)系,
。2)通過向量運算,研究幾何元素之間的關(guān)系,
(3)把運算結(jié)果“翻譯”成幾何關(guān)系。
例2,如圖,平行四邊形ABCD中,點E、F分別是AD、DC邊的中點,BE、BF分別與AC交于R、T兩點,你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎?
探究二:兩個人提一個旅行包,夾角越大越費力。在單杠上做引體向上運動,兩臂夾角越小越省力。這些力的問題是怎么回事?
例3,在日常生活中,你是否有這樣的經(jīng)驗:兩個人共提一個旅行包,夾角越大越費力;在單杠上作引體向上運動,兩臂的夾角越小越省力。你能從數(shù)學(xué)的角度解釋這種現(xiàn)象嗎?
請同學(xué)們結(jié)合剛才這個問題,思考下面的問題:
、艦楹沃禃r,|F1|最小,最小值是多少?
⑵|F1|能等于|G|嗎?為什么?
例4如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問行駛航程最短時,所用的時間是多少(精確到0。1min)?
變式訓(xùn)練:兩個粒子A、B從同一源發(fā)射出來,在某一時刻,它們的位移分別為,(1)寫出此時粒子B相對粒子A的位移s;(2)計算s在方向上的投影。
三、反思總結(jié)
結(jié)合圖形特點,選定正交基底,用坐標表示向量進行運算解決幾何問題,體現(xiàn)幾何問題。
代數(shù)化的特點,數(shù)形結(jié)合的數(shù)學(xué)思想體現(xiàn)的淋漓盡致。向量作為橋梁工具使得運算簡練標致,又體現(xiàn)了數(shù)學(xué)的美。有關(guān)長方形、正方形、直角三角形等平行、垂直等問題常用此法。
本節(jié)主要研究了用向量知識解決平面幾何問題和物理問題;掌握向量法和坐標法,以及用向量解決實際問題的步驟。
高中數(shù)學(xué)教案14
內(nèi)容分析:
1、 集合是中學(xué)數(shù)學(xué)的一個重要的基本概念
在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進一步應(yīng)用集合的語言表述一些問題。例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點集。至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認識問題、研究問題不可缺少的工具。這些可以幫助學(xué)生認識學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)。
把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)
例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。
本節(jié)首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明
然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。
這節(jié)課主要學(xué)習(xí)全章的.引言和集合的基本概念
學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認識學(xué)習(xí)本章的意義
本節(jié)課的教學(xué)重點是集合的基本概念。
集合是集合論中的原始的、不定義的概念
在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識
教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集
”這句話,只是對集合概念的描述性說明。
教學(xué)過程:
一、復(fù)習(xí)引入:
1.簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2.教材中的章頭引言;
3.集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)。
二、講解新課:
閱讀教材第一部分,問題如下:
。1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
。3)集合中元素的特性是什么?
。ㄒ唬┘系挠嘘P(guān)概念:由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
。2)元素:集合中每個對象叫做這個集合的元素
2、常用數(shù)集及記法
(1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合,記作N,N={0,1,2,…}
。2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集,記作N*或N+,N*={1,2,3,…}
。3)整數(shù)集:全體整數(shù)的集合,記作Z ,Z={0,±1,±2,…}
。4)有理數(shù)集:全體有理數(shù)的集合,記作Q,Q={整數(shù)與分數(shù)}
。5)實數(shù)集:全體實數(shù)的集合,記作R,R={數(shù)軸上所有點所對應(yīng)的數(shù)}
注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0
(2)非負整數(shù)集內(nèi)排除0的集,記作N*或N+
Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
3、元素對于集合的隸屬關(guān)系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作aA
4、集合中元素的特性
(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復(fù)
。3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……
元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
、啤啊省钡拈_口方向,不能把a∈A顛倒過來寫。
高中數(shù)學(xué)教案15
1.1.1 任意角
教學(xué)目標
。ㄒ唬 知識與技能目標
理解任意角的概念(包括正角、負角、零角) 與區(qū)間角的概念.
。ǘ 過程與能力目標
會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.
(三) 情感與態(tài)度目標
1. 提高學(xué)生的推理能力;
2.培養(yǎng)學(xué)生應(yīng)用意識. 教學(xué)重點
任意角概念的理解;區(qū)間角的集合的書寫. 教學(xué)難點
終邊相同角的集合的表示;區(qū)間角的集合的書寫.
教學(xué)過程
一、引入:
1.回顧角的定義
、俳堑牡谝环N定義是有公共端點的兩條射線組成的圖形叫做角.
、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形.
二、新課:
1.角的有關(guān)概念:
、俳堑亩x:
角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形.
、诮堑拿Q:
、劢堑姆诸悾 A
正角:按逆時針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角
負角:按順時針方向旋轉(zhuǎn)形成的角
、茏⒁猓
、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡化成“α ”;
、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;
、墙堑母拍罱(jīng)過推廣后,已包括正角、負角和零角.
、菥毩(xí):請說出角α、β、γ各是多少度?
2.象限角的概念:
①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角.
例1.在直角坐標系中,作出下列各角,并指出它們是第幾象限的角.
、 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分別為1、2、3、4、1、2象限角.
3.探究:教材P3面
終邊相同的角的表示:
所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個集合S={ β | β = α +
k·360° ,
k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個周角的和. 注意: ⑴ k∈Z
⑵ α是任一角;
、 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個,它們相差
360°的整數(shù)倍;
、 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.
例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.
⑴-120°;
、640°;
、牵950°12’.
答:⑴240°,第三象限角;
、280°,第四象限角;
、129°48’,第二象限角;
例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.
例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.
4.課堂小結(jié)
、俳堑亩x;
、诮堑姆诸悾
正角:按逆時針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角
負角:按順時針方向旋轉(zhuǎn)形成的角
、巯笙藿;
、芙K邊相同的角的表示法.
5.課后作業(yè):
、匍喿x教材P2-P5;
②教材P5練習(xí)第1-5題;
、劢滩腜.9習(xí)題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,
解:??角屬于第三象限,
? k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或終邊在y軸的非負半軸上的角. 又k·180°+90°<
各是第幾象限角?
。糼·180°+135°(k∈Z) .
。糿·360°+135°(n∈Z) ,
當(dāng)k為偶數(shù)時,令k=2n(n∈Z),則n·360°+90°<此時,
屬于第二象限角
<n·360°+315°(n∈Z) ,
當(dāng)k為奇數(shù)時,令k=2n+1 (n∈Z),則n·360°+270°<此時,
屬于第四象限角
因此
屬于第二或第四象限角.
1.1.2弧度制
。ㄒ唬
教學(xué)目標
。ǘ 知識與技能目標
理解弧度的意義;了解角的集合與實數(shù)集R之間的可建立起一一對應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).
。ㄈ 過程與能力目標
能正確地進行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長公式及扇形的面積公式,并能運用公式解決一些實際問題
(四) 情感與態(tài)度目標
通過新的度量角的單位制(弧度制)的引進,培養(yǎng)學(xué)生求異創(chuàng)新的精神;通過對弧度制與角度制下弧長公式、扇形面積公式的對比,讓學(xué)生感受弧長及扇形面積公式在弧度制下的簡潔美. 教學(xué)重點
弧度的`概念.弧長公式及扇形的面積公式的推導(dǎo)與證明. 教學(xué)難點
“角度制”與“弧度制”的區(qū)別與聯(lián)系.
教學(xué)過程
一、復(fù)習(xí)角度制:
初中所學(xué)的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.
二、新課:
1.引 入:
由角度制的定義我們知道,角度是用來度量角的, 角度制的度量是60進制的,運用起來不太方便.在數(shù)學(xué)和其他許多科學(xué)研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?
2.定 義
我們規(guī)定,長度等于半徑的弧所對的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實際運算中,常常將rad單位省略.
3.思考:
(1)一定大小的圓心角?所對應(yīng)的弧長與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?
。2)引導(dǎo)學(xué)生完成P6的探究并歸納: 弧度制的性質(zhì):
①半圓所對的圓心角為
、谡麍A所對的圓心角為
、壅堑幕《葦(shù)是一個正數(shù).
④負角的弧度數(shù)是一個負數(shù).
、萘憬堑幕《葦(shù)是零.
、藿铅恋幕《葦(shù)的絕對值|α|= .
4.角度與弧度之間的轉(zhuǎn)換:
、賹⒔嵌然癁榛《龋
②將弧度化為角度:
5.常規(guī)寫法:
、 用弧度數(shù)表示角時,常常把弧度數(shù)寫成多少π 的形式, 不必寫成小數(shù).
、 弧度與角度不能混用.
弧長等于弧所對應(yīng)的圓心角(的弧度數(shù))的絕對值與半徑的積.
例1.把67°30’化成弧度.
例2.把? rad化成度.
例3.計算:
(1)sin4
(2)tan1.5.
8.課后作業(yè):
、匍喿x教材P6 –P8;
、诮滩腜9練習(xí)第1、2、3、6題;
、劢滩腜10面7、8題及B2、3題.
【高中數(shù)學(xué)教案】相關(guān)文章:
高中必修數(shù)學(xué)教案01-07
高中數(shù)學(xué)教案10-26
高中數(shù)學(xué)教案09-28
高中必修4數(shù)學(xué)教案03-13
【薦】高中數(shù)學(xué)教案11-14
高中數(shù)學(xué)教案【熱】11-15
【推薦】高中數(shù)學(xué)教案11-10
高中數(shù)學(xué)教案【精】11-20
【熱】高中數(shù)學(xué)教案11-11