高中數(shù)學(xué)教案15篇【優(yōu)選】
作為一名默默奉獻(xiàn)的教育工作者,時(shí)常會需要準(zhǔn)備好教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編收集整理的高中數(shù)學(xué)教案,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數(shù)學(xué)教案1
1.課題
填寫課題名稱(高中代數(shù)類課題)
2.教學(xué)目標(biāo)
(1)知識與技能:
通過本節(jié)課的學(xué)習(xí),掌握......知識,提高學(xué)生解決實(shí)際問題的能力;
(2)過程與方法:
通過......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力;
(3)情感態(tài)度與價(jià)值觀:
通過本節(jié)課的學(xué)習(xí),增強(qiáng)學(xué)生的學(xué)習(xí)興趣,將數(shù)學(xué)應(yīng)用到實(shí)際生活中,增加學(xué)生數(shù)學(xué)學(xué)習(xí)的樂趣。
3.教學(xué)重難點(diǎn)
(1)教學(xué)重點(diǎn):本節(jié)課的知識重點(diǎn)
(2)教學(xué)難點(diǎn):易錯(cuò)點(diǎn)、難以理解的知識點(diǎn)
4.教學(xué)方法(一般從中選擇3個(gè)就可以了)
(1)討論法
(2)情景教學(xué)法
(3)問答法
(4)發(fā)現(xiàn)法
(5)講授法
5.教學(xué)過程
(1)導(dǎo)入
簡單敘述導(dǎo)入課題的方式和方法(例:復(fù)習(xí)、類比、情境導(dǎo)出本節(jié)課的課題)
(2)新授課程(一般分為三個(gè)小步驟)
、俸唵沃v解本節(jié)課基礎(chǔ)知識點(diǎn)(例:奇函數(shù)的定義)。
②歸納總結(jié)該課題中的重點(diǎn)知識內(nèi)容,尤其對該注意的一些情況設(shè)置易錯(cuò)點(diǎn),進(jìn)行強(qiáng)調(diào)。可以設(shè)計(jì)分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點(diǎn)。設(shè)置定義域不關(guān)于原點(diǎn)對稱的函數(shù)是否為奇函數(shù)的易錯(cuò)點(diǎn))。
、弁卣寡由,將所學(xué)知識拓展延伸到實(shí)際題目中,去解決實(shí)際生活中的問題。
。ㄔ谛率谡n里面一定要表下出講課的大體流程,但是不必太過詳細(xì)。)
(3)課堂小結(jié)
教師提問,學(xué)生回答本節(jié)課的收獲。
(4)作業(yè)提高
布置作業(yè)(盡量與實(shí)際生活相聯(lián)系,有所創(chuàng)新)。
6.教學(xué)板書
2.高中數(shù)學(xué)教案格式
一.課題(說明本課名稱)
二.教學(xué)目的(或稱教學(xué)要求,或稱教學(xué)目標(biāo),說明本課所要完成的教學(xué)任務(wù))
三.課型(說明屬新授課,還是復(fù)習(xí)課)
四.課時(shí)(說明屬第幾課時(shí))
五.教學(xué)重點(diǎn)(說明本課所必須解決的關(guān)鍵性問題)
六.教學(xué)難點(diǎn)(說明本課的學(xué)習(xí)時(shí)易產(chǎn)生困難和障礙的知識傳授與能力培養(yǎng)點(diǎn))
七.教學(xué)方法要根據(jù)學(xué)生實(shí)際,注重引導(dǎo)自學(xué),注重啟發(fā)思維
八.教學(xué)過程(或稱課堂結(jié)構(gòu),說明教學(xué)進(jìn)行的內(nèi)容、方法步驟)
九.作業(yè)處理(說明如何布置書面或口頭作業(yè))
十.板書設(shè)計(jì)(說明上課時(shí)準(zhǔn)備寫在黑板上的內(nèi)容)
十一.教具(或稱教具準(zhǔn)備,說明輔助教學(xué)手段使用的工具)
十二.教學(xué)反思:(教者對該堂課教后的感受及學(xué)生的收獲、改進(jìn)方法)
3.高中數(shù)學(xué)教案范文
【教學(xué)目標(biāo)】
1.知識與技能
(1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:
(2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過程:
(3)會應(yīng)用等差數(shù)列通項(xiàng)公式解決簡單問題。
2.過程與方法
在定義的理解和通項(xiàng)公式的'推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價(jià)值觀
通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。
【教學(xué)重點(diǎn)】
、俚炔顢(shù)列的概念;
、诘炔顢(shù)列的通項(xiàng)公式
【教學(xué)難點(diǎn)】
、倮斫獾炔顢(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;
②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程.
【學(xué)情分析】
我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。
【設(shè)計(jì)思路】
1、教法
、賳l(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.
②分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問題,解決問題,調(diào)動(dòng)學(xué)生的積極性.
、壑v練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).
2、學(xué)法
引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對各種能力的同學(xué)引導(dǎo)認(rèn)識多元的推導(dǎo)思維方法.
【教學(xué)過程】
一、創(chuàng)設(shè)情境,引入新課
1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2、水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個(gè)水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位(單位:m)組成一個(gè)什么數(shù)列?
3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?
教師:以上三個(gè)問題中的數(shù)蘊(yùn)涵著三列數(shù).
學(xué)生:
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
(設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.
二、觀察歸納,形成定義
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點(diǎn)?
思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?
教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.
(設(shè)計(jì)意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點(diǎn);一開始抓住:“從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對等差數(shù)列概念的準(zhǔn)確表達(dá).)
三、舉一反三,鞏固定義
1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問題.
注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0.
(設(shè)計(jì)意圖:強(qiáng)化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).
2、思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)
四、利用定義,導(dǎo)出通項(xiàng)
1、已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?
2、已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?
教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點(diǎn)評,并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)
五、應(yīng)用通項(xiàng),解決問題
1、判斷100是不是等差數(shù)列2,9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?
2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差數(shù)列3,7,11,…的第4項(xiàng)和第10項(xiàng)
教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.
學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式
(設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認(rèn)識“基本量法”求解等差數(shù)列問題.)
六、反饋練習(xí):教材13頁練習(xí)1
七、歸納總結(jié):
1、一個(gè)定義:
等差數(shù)列的定義及定義表達(dá)式
2、一個(gè)公式:
等差數(shù)列的通項(xiàng)公式
3、二個(gè)應(yīng)用:
定義和通項(xiàng)公式的應(yīng)用
教師:讓學(xué)生思考整理,找?guī)讉(gè)代表發(fā)言,最后教師給出補(bǔ)充
(設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識和掌握基本概念,并靈活運(yùn)用基本概念.)
【設(shè)計(jì)反思】
本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補(bǔ)充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.
高中數(shù)學(xué)教案2
1. 該生能以校規(guī)班規(guī)嚴(yán)格要求自己。有較強(qiáng)的集體榮譽(yù)感,學(xué)習(xí)態(tài)度認(rèn)真,能吃苦,肯下功夫,成績穩(wěn)定。生活艱苦樸素,待人熱情大方,是個(gè)基礎(chǔ)扎實(shí),品德兼優(yōu)的好學(xué)生。
2. 該生能嚴(yán)格遵守學(xué)校的規(guī)章制度。尊敬師長,團(tuán)結(jié)同學(xué)。熱愛集體,積極配合其他同學(xué)搞好班務(wù)工作,勞動(dòng)積極肯干。學(xué)習(xí)刻苦認(rèn)真,勤學(xué)好問,學(xué)習(xí)成績穩(wěn)定,學(xué)風(fēng)和工作作風(fēng)都較為踏實(shí),堅(jiān)持出滿勤,并能積極參加社會實(shí)踐和文體活動(dòng),勞動(dòng)積極。是一位發(fā)展全面的好學(xué)生。
3. 你是同學(xué)擁護(hù)、老師信任的班委,乖巧懂事、伶俐開朗、自信大方、樂觀合群,是同學(xué)們學(xué)習(xí)的榜樣。你愛護(hù)集體榮譽(yù),有很強(qiáng)的工作能力,總是及時(shí)協(xié)助老師完成班務(wù)工作,是老師的得力幫手。你心性坦蕩,個(gè)性鮮明,能大膽說出自己的想法,難能可貴。而你在運(yùn)動(dòng)場上的爆發(fā)力更讓老師同學(xué)們驚嘆!潛力深厚,希望在高中時(shí)期能逐漸發(fā)掘出來!
4. 你是個(gè)做事小心翼翼,感情細(xì)膩豐富的女孩,每次看你認(rèn)真的樣子老師都很感動(dòng)。你也是幸運(yùn)的,周邊有很多人都在關(guān)愛著你,所以,對他們,尤其是父母,記得不要太莽撞,不要太任性,要學(xué)著體諒,學(xué)著換位思考,學(xué)著懂事。另外,今后要多運(yùn)動(dòng)、多鍛煉,有健康才能成就美好未來!
5. 你堅(jiān)強(qiáng)勇敢、樂觀大方的性格讓老師非常欣賞。學(xué)習(xí)上始終保持著上進(jìn)好學(xué)的決心和韌性,生活中始終能做到豁達(dá)開朗,還有著良好的審美和繪畫的專長,令人欽佩!以入世的態(tài)度做事,以出世的態(tài)度做人,這是我送你的一句話,希望你保持好心態(tài),迎接新的學(xué)習(xí)生活。
6. 最有希望得成功者,并不是才干出眾的人,而是那些最善于利用時(shí)機(jī)去努力開創(chuàng)的人。你是很有才華的孩子,老師希望你能把握好機(jī)會,求得上進(jìn)。你聰明,但也有著許多人共同的毛病——粗心大意和缺乏毅力,若能集中精力持之以恒,堅(jiān)定目標(biāo)致力于學(xué)習(xí),定能大限度地發(fā)揮你的聰明才智!
7. 該生遵紀(jì)守法,積極參加社會實(shí)踐和文體活動(dòng),集體觀念強(qiáng),勞動(dòng)積極肯干。是一位誠實(shí)守信,思想上進(jìn),尊敬老師,團(tuán)結(jié)同學(xué),熱心助人,積極參加班集體活動(dòng),有體育特長,學(xué)習(xí)認(rèn)真,具有較好綜合素質(zhì)的優(yōu)秀學(xué)生。
8. 你聰穎活潑,渾身洋溢青春氣息。你愛好廣泛,善鉆精思,具備一定能力,潛質(zhì)無限。但是在有些時(shí)候,在面臨一些問題的時(shí)候,你總表現(xiàn)得太過緊張,其實(shí),征服畏懼、建立自信的最快最確實(shí)的方法,就是大膽地去做你認(rèn)為害怕的事,直到你獲得成功的經(jīng)驗(yàn)。繼續(xù)努力!
9. 你是對3班這個(gè)集體的成長貢獻(xiàn)很大的孩子,是老師的得力幫手。你干練沉穩(wěn),堅(jiān)強(qiáng)隱忍,能從大局出發(fā)考慮問題,在很多時(shí)候能獨(dú)當(dāng)一面。你獨(dú)立能力強(qiáng),能夠吃苦,但在進(jìn)入高中的學(xué)習(xí)上卻顯得有些吃力。其實(shí)你還有很深的潛力尚未挖掘,找對方法,好好加油,世上沒有絕望的處境,只有對處境絕望的人,請樂觀一點(diǎn),踏實(shí)地走好接下來的每一步!
10. 你是個(gè)能獨(dú)立、有主見的女孩,有自己的想法,有一定的決斷力。但是獨(dú)立不代表乖張,有想法不代表恣意妄為。令人高興的是,你在這點(diǎn)上做的還是不錯(cuò)的。晟君,老師希望你能一如既往地關(guān)注于學(xué)習(xí)而不懈怠,能堅(jiān)持懷揣著平和感恩的心態(tài)簡單快樂地生活。
11. 你給我的第一印象是有些沉默,其實(shí)和朋友在一起時(shí)還是很有自己想法的對吧?你看,你布置的新年教室多么出彩!請繼續(xù)秀出真實(shí)而精彩的你!這半個(gè)學(xué)期的學(xué)習(xí)有點(diǎn)力不從心,請保持謹(jǐn)慎和細(xì)心,保持好的學(xué)習(xí)習(xí)慣,及時(shí)彌補(bǔ)所缺漏的環(huán)節(jié),大步向前進(jìn)!
12. 該生認(rèn)真遵守學(xué)校的規(guī)章制度,積極參加社會實(shí)踐和文體活動(dòng),集體觀念強(qiáng),勞動(dòng)積極肯干。尊敬師長,團(tuán)結(jié)同學(xué)。學(xué)習(xí)態(tài)度認(rèn)真,能吃苦,肯下功夫,成績穩(wěn)定上升。是有理想有抱負(fù),基礎(chǔ)扎實(shí),心理素質(zhì)過硬、全面發(fā)展的優(yōu)秀學(xué)生。
13. 你是一個(gè)真誠待人、溫柔可愛的女生。也許是因?yàn)槟阌行┎痪o不慢的性格,所以在學(xué)習(xí)上有時(shí)候行動(dòng)力不夠堅(jiān)決,造成了學(xué)習(xí)成績的不穩(wěn)定。請多利用假期時(shí)間好好補(bǔ)缺補(bǔ)漏,向上的姿態(tài)才是最重要的!
14. 老師同學(xué)們都在說你是個(gè)很有責(zé)任心和上進(jìn)心的孩子,在班級需要的時(shí)候,你承擔(dān)了勞動(dòng)委員的重任,經(jīng)常最后一個(gè)離開,就為了班級能有個(gè)整潔的環(huán)境。老師很感謝你!而更可貴的是,你懂得安排自己的時(shí)間,在工作的空隙抓緊時(shí)間做作業(yè)。希望下學(xué)期你的學(xué)習(xí)成績也能隨你的毅力和執(zhí)著步步攀升,加油,羽騰!
15. 其實(shí)你擁有你自己都不確知的才華,從你的文字中可以讀出這樣的信息:你時(shí)常沉醉在自己的小世界中,做自己喜歡做的事情。老師希望你能敞開心扉,多與旁人交流你快樂的體驗(yàn)和想法,不要吝嗇展示自己!還有,成功需要成本,時(shí)間也是一種成本,對時(shí)間的珍惜就是對成本的節(jié)約。請務(wù)必抓緊每寸光陰,努力學(xué)習(xí)!
16. 你知道嗎?在世界上那些最容易的事情中,拖延時(shí)間是最不費(fèi)力的。而學(xué)習(xí)卻是艱辛的勞動(dòng)過程。表面安靜的你其實(shí)心里有著自己的想法和煩憂。于是在不經(jīng)意間,精力被不自覺地轉(zhuǎn)移到一些瑣事上,卻總無法完全集中心智于學(xué)業(yè)。也許你也已經(jīng)意識到,也有了些許進(jìn)步,那么請千萬記住要持之以恒,要付出比別人更多倍的努力!
17. 你是班級的數(shù)學(xué)科代表,老師很高興選擇你擔(dān)任這個(gè)職務(wù),不僅能促進(jìn)自己的進(jìn)步,而且也展現(xiàn)了你負(fù)責(zé)工作的一面。但是學(xué)習(xí)是要和工作一樣,需要一絲不茍的態(tài)度,包括上課的聽講是否及時(shí)而有效,包括功課的完成是否嚴(yán)謹(jǐn)而認(rèn)真。下學(xué)期,愿看到一個(gè)更加全神貫注更加專心致志的你!
18. 我一直難忘在運(yùn)動(dòng)會上你擔(dān)任前導(dǎo)牌的樣子,為班級添光增彩了不少!你有著繪畫的特長,是個(gè)善良、真誠的女孩,有著細(xì)膩豐富的內(nèi)心,也許只需一點(diǎn)鼓勵(lì),你便會勇敢走下去,希望能在平時(shí)多聽見你爽朗的笑聲!
19. 可愛、熱情、謹(jǐn)小慎微,這都是你的代名詞。你略為靦腆的微笑讓人印象深刻。老師一直認(rèn)為你是能夠認(rèn)真仔細(xì)地作好每一件事情、成就每一個(gè)細(xì)節(jié)的,因此,希望你能珍惜時(shí)間,提高效率,在學(xué)習(xí)上狠狠加油!
20. 其實(shí),任何事都是有重量的',那么,就看你把它變成壓力還是重力了。在這個(gè)方面,我很高興地看到你做的很好,你學(xué)習(xí)自覺,成績便是努力的證明。老師安排你做物理科代表就是希望能多培養(yǎng)你的責(zé)任意識、大局意識和管理能力,希望以后在這方面能看到你更加出色的表現(xiàn)!
21. 你是個(gè)可愛善良,懂事乖巧的女孩。作為語文科代表,兢兢業(yè)業(yè),一絲不茍。你對人也是特別真誠熱情,偶爾透露出的憂郁是旁人不易察覺的。但是你知道,成長就是破蛹成蝶的過程,高中是人生的重要階段,勇敢地邁好每一步吧,享受成長帶來的所有痛苦和快樂!
22. 你很有能力,也很潛力,但欠缺的卻是耐力和毅力。君子厚積而薄發(fā),希望你能振作精神,跟上進(jìn)度,迎頭趕上,期待你獲得更大的進(jìn)步!
23. 你曾經(jīng)和我說過你的理想,但你對理想的憧憬和你所付出的努力程度卻總是難成正比。若現(xiàn)在你覺得有障礙擋在前行之路上,那就說明你還沒有把目標(biāo)看的足夠清楚。寧在事前心力交瘁的努力,事后悠然自得;也不要在事前悠然自得,而在臨事時(shí)無法適從。你現(xiàn)在欠缺的就是對自己發(fā)狠奮進(jìn)的恒心,柏宇,“要想人前顯貴,必定人后受罪”,成功要靠實(shí)踐去爭取,而不是光靠幾句好聽的決心話!
24. 你乖巧大方,組織能力一流,但在學(xué)習(xí)上總顯得有些力不從心?祚R加鞭迎頭趕上固然是必需,但也別太心急,要知道,欲速則不達(dá),只要踏實(shí)努力,不懂就問,采用適合自己的學(xué)習(xí)方法,就會看到進(jìn)步。也許剛開始的時(shí)候進(jìn)步很小,小到你看不見,但是不要灰心,萬事開頭難!將事前的憂慮,換為事前的思考和計(jì)劃,徹底放松,加強(qiáng)鍛煉,養(yǎng)足精神再迎戰(zhàn)!你能做到的,蔡煒,加油!
25. 該生能遵守校紀(jì)班規(guī),尊敬師長,能與同學(xué)和睦相處,勤學(xué)好問,有較強(qiáng)的獨(dú)立鉆研能力,分析問題比較深入、全面,在某些問題上有獨(dú)特的見解,學(xué)習(xí)成績在班上一直能保持前茅,樂于助人,能幫助學(xué)習(xí)有困難的同學(xué)。
26. 不論在體育場還是教室里,看到你神采奕奕的樣子,總讓人聯(lián)想到“英姿颯爽”這四個(gè)字。這確是一個(gè)高中生應(yīng)該有的精神面貌。你做事認(rèn)真,顧全大局,真的非常難得。希望能保持這樣良好的狀態(tài),繼續(xù)前進(jìn)!也希望能夠多和老師同學(xué)交流,多提些對班集體建設(shè)的好建議!
27. 該生能以校規(guī)班規(guī)嚴(yán)格要求自己,積極參加社會實(shí)踐和文體活動(dòng)。尊敬師長,團(tuán)結(jié)同學(xué)。集體觀念強(qiáng),勞動(dòng)積極肯干。積極參加各種集體活動(dòng)和社會實(shí)踐活動(dòng)。學(xué)習(xí)目的明確,刻苦認(rèn)真,成績穩(wěn)定,是一個(gè)有理想、有抱負(fù),基礎(chǔ)扎實(shí),心理素質(zhì)過硬,全面發(fā)展的優(yōu)秀學(xué)生。
28. 我很高興看到你是個(gè)有上進(jìn)心,有責(zé)任感,能夠讓家人、師長寬慰的孩子。有努力就有回報(bào),你下半學(xué)期的表現(xiàn)不就證明了這一點(diǎn)嗎?進(jìn)步是隨著時(shí)間節(jié)節(jié)上升的,不要太過急躁,要知道,若你不給自己設(shè)限,則人生中就沒有限制你發(fā)揮的藩籬。新學(xué)期要重整旗鼓,再接再勵(lì)!
29. ××× 獨(dú)立性較強(qiáng),對自己的能力也有準(zhǔn)確的定位。建議今后學(xué)習(xí)上要養(yǎng)成勤思愛問的習(xí)慣,不能做井底之蛙,滿足于現(xiàn)狀,要充分利用他人的智慧,最后達(dá)到“好風(fēng)憑借力,送我上青云”的目的。
30. ××× 每天在教室,都能看到你埋頭苦讀的身影,可見讀書的態(tài)度很端正;而你每一次考試的成績雖然不拔尖,卻是在穩(wěn)步前進(jìn),可見讀書的效率還不錯(cuò)。請繼續(xù)保持這種虛心求學(xué)、穩(wěn)步前進(jìn)的態(tài)勢,相信一年半以后的高考,你必將嶄露頭角,脫穎而出。
高中數(shù)學(xué)教案3
一、活動(dòng)主題的提出
根據(jù)新課改課程標(biāo)準(zhǔn)及高中數(shù)學(xué)教學(xué)要求,為切實(shí)實(shí)施素質(zhì)教育,改革教學(xué)方式與方法,變教教材為用教材,有機(jī)地開展校本課程,培養(yǎng)學(xué)生的綜合實(shí)踐能力和創(chuàng)新能力,培養(yǎng)學(xué)生的探索精神和用數(shù)學(xué)的意識,以教材中的閱讀與思考為素教材,推進(jìn)高中數(shù)學(xué)研究性學(xué)習(xí)的進(jìn)程,對該問題進(jìn)行研究,旨在為深化課堂教學(xué)內(nèi)容,促進(jìn)性自主研究和學(xué)習(xí),從而探討高中數(shù)學(xué)研究性學(xué)習(xí)的實(shí)施辦法。
二、活動(dòng)的具體目標(biāo)
1、知識目標(biāo):通過集合中元素的個(gè)數(shù)問題的研究,探求有限集合中元素個(gè)數(shù)間的關(guān)系,比較幾個(gè)集合中元素個(gè)數(shù)的多少的方法。
2、能力目標(biāo):能多方面、多角度、多層面來探究問題,運(yùn)用知識來解決問題,培養(yǎng)學(xué)生的發(fā)散思維和創(chuàng)新思維能力。
3、情感目標(biāo):學(xué)該課題的研究,激發(fā)學(xué)生的學(xué)習(xí)熱情和學(xué)習(xí)興趣,享受探索成功的樂趣,培養(yǎng)科學(xué)態(tài)度與科學(xué)精神。
三、活動(dòng)的實(shí)施過程、方式
1、出示活動(dòng)內(nèi)容與思考的問題(5分鐘)
(1)、學(xué)校小賣部進(jìn)了兩次貨,第一次進(jìn)的貨是圓珠筆、鋼筆、橡皮、筆記本、方便面、汽水共6種,第二次進(jìn)的貨是圓珠筆、鉛筆、火腿腸、方便面共4種,兩次一共進(jìn)了幾種貨?回答兩次一共進(jìn)了10(6+4)種,對嗎?應(yīng)如何解答?有哪些方法?因此可以得出什么結(jié)論(集合中元素個(gè)數(shù)間的關(guān)系)?
。2)、學(xué)校先舉辦了一次田徑運(yùn)動(dòng)會,某班有8名同學(xué)參賽,又舉辦了一次球類運(yùn)動(dòng)會,這個(gè)班有12名同學(xué)參賽,兩次運(yùn)動(dòng)會都參賽的有3人。兩次運(yùn)動(dòng)會中,這個(gè)班共有多少名同學(xué)參賽?應(yīng)如何解答?由此解出以下結(jié)論(集合中元素個(gè)數(shù)間的關(guān)系)?又如:某班共30人,其中15人喜愛籃球運(yùn)動(dòng),10人喜愛乒乓球運(yùn)動(dòng),8人對這兩項(xiàng)運(yùn)動(dòng)都不喜愛,則喜愛籃球運(yùn)動(dòng)但不喜愛乒乓球運(yùn)動(dòng)的人是多少?應(yīng)如何解答?
。3)涉及三個(gè)及三個(gè)以上,集合的并、交問題,能用類似的結(jié)論嗎?應(yīng)怎樣表達(dá)?如:學(xué)校開運(yùn)動(dòng)會,設(shè)。若參加一百米的同學(xué)有5人,參加二百米跑的同學(xué)有6人,參加四百米跑的同學(xué)有7人,參加一百、二百同學(xué)有2人,參加一百、四百的同學(xué)有3人,參加二百、四百的同學(xué)有5人,三項(xiàng)都參加的人有1人,求有多少人參賽?
(4)設(shè)計(jì)比較集合與集合B=中元素的個(gè)數(shù)的多少的方法。
2、活動(dòng)分工及時(shí)間安排(25分鐘)
全班以大組為單位(共四個(gè)大組)來研究以上4個(gè)問題。第一大組研究(1)問題,第二大組研究(2)個(gè)問題,第三大組研究(3)個(gè)問題,第四大組研究(4)個(gè)問題。要求每組由學(xué)生自行確定一位負(fù)責(zé)人,并由此同學(xué)組織具體活動(dòng),明確該同學(xué)是下步活動(dòng)交流中心發(fā)言人。有余力的組可協(xié)助思考其它組的問題。教師下到各組視察,了解情況,并作必要的指導(dǎo)。
3、活動(dòng)交流(15分鐘)
請每一小組中心發(fā)言人回答各自分配的問題,全班其它同學(xué)補(bǔ)充,教師引導(dǎo)學(xué)生概括,得出結(jié)論:
列舉法
問題(1)涉及的集合元素個(gè)數(shù)較少而且具體,可用列舉法寫出,很快可解決此問題,并由特殊到一般的思維方式概括得出:
圖解法
當(dāng)集合元素個(gè)數(shù)較少而不具體時(shí),據(jù)題意畫出集合的韋恩圖,從而解決實(shí)際問題如問題(2),并歸納得出:這一結(jié)論。
數(shù)形結(jié)合法
利用集合間的關(guān)系,結(jié)合示意圖,據(jù)未知可設(shè)適當(dāng)?shù)奈粗獢?shù),建立方程求解,如問題(2)中的第二個(gè)問題。設(shè)喜愛籃球運(yùn)動(dòng)但不喜愛乒乓球運(yùn)動(dòng)的人數(shù)為x,則兩項(xiàng)都喜愛的有(15-x)人,喜愛乒乓球而不喜愛籃球的有[10-(15-x)]人,據(jù)題意有:x+(15-x)+[10-(15-x)]+8=30,解得x=12。故喜愛籃球運(yùn)動(dòng)但不喜愛乒乓球運(yùn)動(dòng)的有12人。
歸納、猜想法
通過對問題(3)的求解,并結(jié)合問題(1)、(2)的'求解,歸納、猜想出:。
概念派生法
通過問題(4)的研究求解,大部分學(xué)生較易得出A,因此,由真子集的概念得出集合B的元素的個(gè)數(shù)少于集合A的元素的個(gè)數(shù)。這個(gè)結(jié)論是由概念的內(nèi)涵派生出來的。
“對應(yīng)”法
經(jīng)研究討論,同學(xué)中有“集合A的元素個(gè)數(shù)等于集合B的元素個(gè)數(shù)”的結(jié)論。少數(shù)同學(xué)運(yùn)用“對應(yīng)”思想:,顯然有此結(jié)論。這是一個(gè)多好的想法!
四、活動(dòng)評價(jià)
充分運(yùn)用高中數(shù)學(xué)子教材資源“閱讀與思考”,廣泛開展第二課堂活動(dòng),能很好地調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,能很好地開發(fā)學(xué)生的創(chuàng)造潛能,有助于學(xué)生探究能力和創(chuàng)新能力的提高。通過本課題的研究,至少有以下成功之處:第一、深化了課堂知識,進(jìn)一步鞏固和拓展了所學(xué)知識;第二、培養(yǎng)了學(xué)生探究能力,很好地改變了學(xué)生的學(xué)習(xí)方式、方法;第三、增強(qiáng)了學(xué)生運(yùn)用知識解決問題的意識:該課題以解決問題為背景,通過分工與合作和恰當(dāng)?shù)匾龑?dǎo),學(xué)生用知識的意識明顯增強(qiáng),運(yùn)用知識解決問題的能力明顯提高;第四、培養(yǎng)了學(xué)生的思維品質(zhì)。通過問題(4)的研究,我們得出了不一樣的結(jié)論,但都有道理,學(xué)生向引發(fā)爭議,學(xué)生的批判性思維得到較好的發(fā)展。
五、注意事項(xiàng)
1、教師課題準(zhǔn)備要充分。要認(rèn)真鉆研材料;查閱相關(guān)資料或研究成果;作好周密的活動(dòng)計(jì)劃。切忌無準(zhǔn)備或準(zhǔn)備不充分就上課。
2、避免“活動(dòng)研究課”上課學(xué)科化,要充分地讓學(xué)生自主的活動(dòng),不人為地牽制學(xué)生。
3、積極引導(dǎo)學(xué)生搞好“交流——合作”環(huán)節(jié)的活動(dòng),充分聽取學(xué)生的意見,讓學(xué)生自己總結(jié)作法和研究成果,切忌教師包辦,強(qiáng)加于人。
4、堅(jiān)持引導(dǎo)學(xué)生寫好活動(dòng)總結(jié)和體會,歸納研究方法與成果,忌只管上課不管下課,課后不鞏固。
高中數(shù)學(xué)教案4
教學(xué)目標(biāo)
1.理解的概念,掌握的通項(xiàng)公式,并能運(yùn)用公式解決簡單的問題.
。1)正確理解的定義,了解公比的概念,明確一個(gè)數(shù)列是的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是,了解等比中項(xiàng)的概念;
(2)正確認(rèn)識使用的表示法,能靈活運(yùn)用通項(xiàng)公式求的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);
。3)通過通項(xiàng)公式認(rèn)識的性質(zhì),能解決某些實(shí)際問題.
2.通過對的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì).
3.通過對概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度.
教學(xué)建議
教材分析
。1)知識結(jié)構(gòu)
是另一個(gè)簡單常見的數(shù)列,研究內(nèi)容可與等差數(shù)列類比,首先歸納出的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用.
(2)重點(diǎn)、難點(diǎn)分析
教學(xué)重點(diǎn)是的定義和對通項(xiàng)公式的認(rèn)識與應(yīng)用,教學(xué)難點(diǎn)在于通項(xiàng)公式的推導(dǎo)和運(yùn)用.
、倥c等差數(shù)列一樣,也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出的特性,這些是教學(xué)的重點(diǎn).
、陔m然在等差數(shù)列的學(xué)習(xí)中曾接觸過不完全歸納法,但對學(xué)生來說仍然不熟悉;在推導(dǎo)過程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn).
、蹖Φ炔顢(shù)列、的綜合研究離不開通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn).
教學(xué)建議
。1)建議本節(jié)課分兩課時(shí),一節(jié)課為的概念,一節(jié)課為通項(xiàng)公式的應(yīng)用.
(2)概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到的定義.也可將幾個(gè)等差數(shù)列和幾個(gè)混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來分的,由此對比地概括的'定義.
(3)根據(jù)定義讓學(xué)生分析的公比不為0,以及每一項(xiàng)均不為0的特性,加深對概念的理解.
(4)對比等差數(shù)列的表示法,由學(xué)生歸納的各種表示法.啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫數(shù)列的圖象.
。5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).
。6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.
教學(xué)設(shè)計(jì)示例
課題:的概念
教學(xué)目標(biāo)
1.通過教學(xué)使學(xué)生理解的概念,推導(dǎo)并掌握通項(xiàng)公式.
2.使學(xué)生進(jìn)一步體會類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.
3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)、難點(diǎn)是的定義的歸納及通項(xiàng)公式的推導(dǎo).
教學(xué)用具
投影儀,多媒體軟件,電腦.
教學(xué)方法
討論、談話法.
教學(xué)過程
一、提出問題
給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn).(幻燈片)
、伲2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
、1,1,1,1,1,1,1,…
、243,81,27,9,3,1,,,…
⑤31,29,27,25,23,21,19,…
⑥1,-1,1,-1,1,-1,1,-1,…
⑦1,-10,100,-1000,10000,-100000,…
、0,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為).
二、講解新課
請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題.假設(shè)每經(jīng)過一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開始有一個(gè)變形蟲,經(jīng)過一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù)這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——.(這里播放變形蟲分裂的多媒體軟件的第一步)
。ò鍟
1.的定義(板書)
根據(jù)與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出的定義,標(biāo)注出重點(diǎn)詞語.
請學(xué)生指出②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是.學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例.而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是,當(dāng)時(shí),它只是等差數(shù)列,而不是.教師追問理由,引出對的認(rèn)識:
2.對定義的認(rèn)識(板書)
。1)的首項(xiàng)不為0;
(2)的每一項(xiàng)都不為0,即;
問題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為的什么條件?
。3)公比不為0.
用數(shù)學(xué)式子表示的定義.
是①.在這個(gè)式子的寫法上可能會有一些爭議,如寫成,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為是?為什么不能?
式子給出了數(shù)列第項(xiàng)與第項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)?(不能)確定一個(gè)需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.
3.的通項(xiàng)公式(板書)
問題:用和表示第項(xiàng).
、俨煌耆珰w納法
.
②疊乘法
,…,,這個(gè)式子相乘得,所以.
(板書)(1)的通項(xiàng)公式
得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識通項(xiàng)公式.
。ò鍟2)對公式的認(rèn)識
由學(xué)生來說,最后歸結(jié):
①函數(shù)觀點(diǎn);
、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識,此處再復(fù)習(xí)鞏固而已).
這里強(qiáng)調(diào)方程思想解決問題.方程中有四個(gè)量,知三求一,這是公式最簡單的應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題).解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓(xùn)練)
如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.
三、小結(jié)
1.本節(jié)課研究了的概念,得到了通項(xiàng)公式;
2.注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;
3.用方程的思想認(rèn)識通項(xiàng)公式,并加以應(yīng)用.
四、作業(yè)(略)
五、板書設(shè)計(jì)
1.等比數(shù)列的定義
2.對定義的認(rèn)識
3.等比數(shù)列的通項(xiàng)公式
(1)公式
。2)對公式的認(rèn)識
探究活動(dòng)
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0.01毫米.
參考答案:
30次后,厚度為,這個(gè)厚度超過了世界最高的山峰——珠穆朗瑪峰的高度.如果紙?jiān)俦∫恍,比如紙?.001毫米,對折34次就超過珠穆朗瑪峰的高度了.還記得國王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(用對數(shù)算也行).
高中數(shù)學(xué)教案5
一、教材分析
1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個(gè)空間圖形!岸娼恰笔侨私贪妗稊(shù)學(xué)》第二冊(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究兩個(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對學(xué)生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
2、教學(xué)目標(biāo):
知識目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問題。
。2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。
能力目標(biāo):(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過對圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動(dòng)手操作能力。
德育目標(biāo):(1)使學(xué)生認(rèn)識到數(shù)學(xué)知識來自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。
情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評價(jià),拉近學(xué)生之間、師生之間的情感距離。
3、重點(diǎn)、難點(diǎn):
重點(diǎn):“二面角”和“二面角的平面角”的概念
難點(diǎn):“二面角的平面角”概念的形成過程
二、教法分析
1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問題啟導(dǎo)、活動(dòng)探究和類比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。
。、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。
3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的'模型。
三、學(xué)法指導(dǎo)
1、樂學(xué):在整個(gè)學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識,全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。
2、學(xué)會:在掌握基礎(chǔ)知識的同時(shí),學(xué)生要注意領(lǐng)會化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會建立完善的認(rèn)知結(jié)構(gòu)。
3、會學(xué):通過自己親身參與,學(xué)生要領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法,從而既學(xué)到知識,又學(xué)會創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。
四、教學(xué)過程
心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會對概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。
。ㄒ唬⒍娼
1、揭示概念產(chǎn)生背景。
問題情境1、在平面幾何中“角”是怎樣定義的?
問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?
問題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書課題)。
通過這三個(gè)問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過程。
問題情境4、那么,應(yīng)該如何定義二面角呢?
創(chuàng)設(shè)這個(gè)問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學(xué)生說,對于學(xué)生的創(chuàng)新意識和創(chuàng)新結(jié)果,教師要給與積極的評價(jià)。
問題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。
。ǘ⒍娼堑钠矫娼
1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面
與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進(jìn)一步的探討,我們有必要來研究二面角的度量問題。
問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。
2、展現(xiàn)概念形成過程
(1)、類比。教師啟發(fā),尋找類比聯(lián)想的對象。
問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,電腦演示以提高效率。
問題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的。
問題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?
。2)、提出猜想:二面角的大小也可通過平面的角來定義。對學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識和習(xí)慣,這對強(qiáng)化他們的創(chuàng)新意識大有幫助。
問題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺思維的結(jié)果。
。3)、探索實(shí)驗(yàn)。通過實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。
。4)、繼續(xù)探索,得到定義。
問題情境11、那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。
。5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。
。ㄈ、二面角及其平面角的畫法
主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。
。ㄋ模⒎独治
為鞏固學(xué)生所學(xué)知識,由于時(shí)間的關(guān)系設(shè)置了一道例題。來源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會到數(shù)學(xué)概念來自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識。
例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個(gè)1200二面角,求此時(shí)B、c兩點(diǎn)間的距離。
分析:涉及二面角的計(jì)算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角。可讓學(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會。教師講評時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。
變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。
題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。
。2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)
(五)、練習(xí)、小結(jié)與作業(yè)
練習(xí):習(xí)題9.7的第3題
小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法。
作業(yè):習(xí)題9.7的第4題
思考題:見例題
五、板書設(shè)計(jì)(見課件)
以上是我對《二面角》授課的初步設(shè)想,不足之處,懇請大家批評指正,謝謝!
高中數(shù)學(xué)教案6
1. 幽默風(fēng)趣的你,平時(shí)在班里話語不多,也不張揚(yáng),但是,你在無意中的表現(xiàn)仍然贏得了很好的人際關(guān)系,學(xué)習(xí)上你認(rèn)真刻苦,也能及時(shí)的完成作業(yè),但是我覺得你總是沒把全部的心思用在學(xué)習(xí)上,不然以你的聰明,應(yīng)該保持在前三名才對啊,加油吧,也許關(guān)注學(xué)習(xí)成績對你才是更有意義的事!
2. 身為紀(jì)律委員的你,認(rèn)真負(fù)責(zé),以身作則,生活上的你平易近人,與同學(xué)關(guān)系融洽,學(xué)習(xí)上你勤奮刻苦,尤其在英語的學(xué)習(xí)上,顯示出了你的語言天賦,我覺得,假如你能把這份自信和興趣用到其他的學(xué)科學(xué)習(xí)中,也一定會收獲很多的!加油吧!
3. 你能嚴(yán)格遵守校規(guī),上課認(rèn)真聽講,作業(yè)完成認(rèn)真,樂于助人,愿意幫助同學(xué),大掃除時(shí)你不怕苦,不怕累,但是英語方面還不夠給力,所以,如果再投入一點(diǎn),定會取得更好的結(jié)果,而且你還是一個(gè)愿意動(dòng)腦筋的好學(xué)生,如果繼續(xù)保持下去定會取得驕人的成績!
4. 你是個(gè)懂禮貌明事理的孩子,你能嚴(yán)格遵守班級紀(jì)律,熱愛集體,對待學(xué)習(xí)態(tài)度端正,上課能夠?qū)P穆犞v,課下能夠認(rèn)真完成作業(yè)。你的學(xué)習(xí)方法有待改進(jìn),若能做到學(xué)習(xí)時(shí)心無旁騖就好了,掌握知識也不夠牢固,思維能力要進(jìn)一步培養(yǎng)和提高,平時(shí)善于多動(dòng)筆認(rèn)真作好筆記,多開動(dòng)腦筋,相信你一定能在下學(xué)期更得更大的進(jìn)步! 你學(xué)習(xí)認(rèn)真刻苦,也能善于思考,更十分活潑,并能嚴(yán)格遵守班級和宿舍紀(jì)律,上課你能認(rèn)真聽講,做作業(yè)時(shí)你十分專注,常常愿意花功夫鉆研難題,與同學(xué)相處也十分融洽,但若能在認(rèn)真做作業(yè)的同時(shí),將速度提上去,我相信你會做得更好。要多講究學(xué)習(xí)方法,不能靠熬夜來完成學(xué)習(xí)任務(wù),提高學(xué)習(xí)效率,老師相信你一定能通過自己的努力取得更好的成績!
5. 雖然你個(gè)頭小,但每次你領(lǐng)讀時(shí)的那股認(rèn)真勁兒,令老師暗暗稱贊。你尊敬老師,和同學(xué)能和睦相處。甜美可愛的你,經(jīng)過不斷的努力,你會更出色的!
6. 你是個(gè)活潑可愛的孩子,課堂上,你非常投入地學(xué)習(xí)著,朗讀課文時(shí)數(shù)你最有感情。中午你還主動(dòng)給老師捶背,真是個(gè)會關(guān)心人的孩子,老師謝謝你。你十分喜愛讀課外書,不過課上可不能偷看啊!愿書成為你的好朋友。
7. 學(xué)習(xí)中你能嚴(yán)格要求自己,這是你永不落敗的.秘訣。老師希望你能借助良好的學(xué)習(xí)方法,抓緊一切時(shí)間,笑在最后的一定是你!
8. 許麗君——你思想上進(jìn),踏實(shí)穩(wěn)重,誠實(shí)謙虛,尊敬老師。黑板報(bào)中有你傾注的心血,集體榮譽(yù)簿里有你的功勞。但學(xué)習(xí)的主動(dòng)精神不夠,競爭意識不強(qiáng),也很少看到你向老師請教,成績進(jìn)步不明顯。請相信:世上沒有比腳更長的路,也沒有比心更高的山!望今后大膽進(jìn)取,多思多問,發(fā)揮你的聰明才智,進(jìn)一步激發(fā)活力,提高學(xué)習(xí)效率,持之以恒,美好的明天屬于你!
9. 每天你都背著書包高高興興地來上學(xué),學(xué)到了不少的知識,可惜只能記住很少的一部分。希望你改進(jìn)學(xué)習(xí)方法,提高學(xué)習(xí)效率,在下學(xué)期有更大的進(jìn)步!
10. 你言語不多,但待人誠懇、禮貌,作風(fēng)踏實(shí),品學(xué)兼優(yōu),熱愛班級,關(guān)愛同學(xué),勤奮好學(xué),思維敏捷,成績優(yōu)秀。愿你扎實(shí)各科基礎(chǔ),堅(jiān)持不懈,!一定能考上重點(diǎn)! 優(yōu)秀的男生肯定是逗人喜歡的,老師希望你能一如既往的優(yōu)秀,把這種優(yōu)秀保持在你人生的每一階段中。你的人生就是輝煌如意的!
高中數(shù)學(xué)教案7
一、課程性質(zhì)與任務(wù)
數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué),是科學(xué)和技術(shù)的基礎(chǔ),是人類文化的重要組成部分。數(shù)學(xué)課程是中等職業(yè)學(xué)校學(xué)生必修的一門公共基礎(chǔ)課。本課程的任務(wù)是:使學(xué)生掌握必要的數(shù)學(xué)基礎(chǔ)知識,具備必需的`相關(guān)技能與能力,為學(xué)習(xí)專業(yè)知識、掌握職業(yè)技能、繼續(xù)學(xué)習(xí)和終身發(fā)展奠定基礎(chǔ)。二、課程教學(xué)目標(biāo)
1.在九年義務(wù)教育基礎(chǔ)上,使學(xué)生進(jìn)一步學(xué)習(xí)并掌握職業(yè)崗位和生活中所必要的數(shù)學(xué)基礎(chǔ)知識。2.培養(yǎng)學(xué)生的計(jì)算技能、計(jì)算工具使用技能和數(shù)據(jù)處理技能,培養(yǎng)學(xué)生的觀察能力、空間想象能力、分析與解決問題能力和數(shù)學(xué)思維能力。
3.引導(dǎo)學(xué)生逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣、實(shí)踐意識、創(chuàng)新意識和實(shí)事求是的科學(xué)態(tài)度,提高學(xué)生就業(yè)能力與創(chuàng)業(yè)能力。三、教學(xué)內(nèi)容結(jié)構(gòu)
本課程的教學(xué)內(nèi)容由基礎(chǔ)模塊、職業(yè)模塊和拓展模塊三個(gè)部分構(gòu)成。
1.基礎(chǔ)模塊是各專業(yè)學(xué)生必修的基礎(chǔ)性內(nèi)容和應(yīng)達(dá)到的基本要求,教學(xué)時(shí)數(shù)為128學(xué)時(shí)。2.職業(yè)模塊是適應(yīng)學(xué)生學(xué)習(xí)相關(guān)專業(yè)需要的限定選修內(nèi)容,各學(xué)校根據(jù)實(shí)際情況進(jìn)行選擇和安排教學(xué),教學(xué)時(shí)數(shù)為32~64學(xué)時(shí)。
3.拓展模塊是滿足學(xué)生個(gè)性發(fā)展和繼續(xù)學(xué)習(xí)需要的任意選修內(nèi)容,教學(xué)時(shí)數(shù)不做統(tǒng)一規(guī)定。四、教學(xué)內(nèi)容與要求
。ㄒ唬┍敬缶V教學(xué)要求用語的表述1.認(rèn)知要求(分為三個(gè)層次)
了解:初步知道知識的含義及其簡單應(yīng)用。
理解:懂得知識的概念和規(guī)律(定義、定理、法則等)以及與其他相關(guān)知識的聯(lián)系。掌握:能夠應(yīng)用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養(yǎng)要求(分為三項(xiàng)技能與四項(xiàng)能力)
計(jì)算技能:根據(jù)法則、公式,或按照一定的操作步驟,正確地進(jìn)行運(yùn)算求解。計(jì)算工具使用技能:正確使用科學(xué)型計(jì)算器及常用的數(shù)學(xué)工具軟件。數(shù)據(jù)處理技能:按要求對數(shù)據(jù)(數(shù)據(jù)表格)進(jìn)行處理并提取有關(guān)信息。觀察能力:根據(jù)數(shù)據(jù)趨勢,數(shù)量關(guān)系或圖形、圖示,描述其規(guī)律。
空間想象能力:依據(jù)文字、語言描述,或較簡單的幾何體及其組合,想象相應(yīng)的空間圖形;能夠在基本圖形中找出基本元素及其位置關(guān)系,或根據(jù)條件畫出圖形。
分析與解決問題能力:能對工作和生活中的簡單數(shù)學(xué)相關(guān)問題,作出分析并運(yùn)用適當(dāng)?shù)臄?shù)學(xué)方法予以解決。
數(shù)學(xué)思維能力:依據(jù)所學(xué)的數(shù)學(xué)知識,運(yùn)用類比、歸納、綜合等方法,對數(shù)學(xué)及其應(yīng)用問題能進(jìn)行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。
(二)教學(xué)內(nèi)容與要求1.基礎(chǔ)模塊(128學(xué)時(shí))第1單元集合(10學(xué)時(shí))
第2單元不等式(8學(xué)時(shí))
第3單元函數(shù)(12學(xué)時(shí))
第4單元指數(shù)函數(shù)與對數(shù)函數(shù)(12學(xué)時(shí))
第5單元三角函數(shù)(18學(xué)時(shí))
第6單元數(shù)列(10學(xué)時(shí))
第7單元平面向量(矢量)(10學(xué)時(shí))
第8單元直線和圓的方程(18學(xué)時(shí))
第9單元立體幾何(14學(xué)時(shí))
第10單元概率與統(tǒng)計(jì)初步(16學(xué)時(shí))
2.職業(yè)模塊
第1單元三角計(jì)算及其應(yīng)用(16學(xué)時(shí))
第2單元坐標(biāo)變換與參數(shù)方程(12學(xué)時(shí))
第3單元復(fù)數(shù)及其應(yīng)用(10學(xué)時(shí))
高中數(shù)學(xué)教案8
教學(xué)目標(biāo)
知識與技能目標(biāo):
本節(jié)的中心任務(wù)是研究導(dǎo)數(shù)的幾何意義及其應(yīng)用,概念的形成分為三個(gè)層次:
(1)通過復(fù)習(xí)舊知“求導(dǎo)數(shù)的兩個(gè)步驟”以及“平均變化率與割線斜率的關(guān)系”,解決了平均變化率的幾何意義后,明確探究導(dǎo)數(shù)的幾何意義可以依據(jù)導(dǎo)數(shù)概念的形成尋求解決問題的途徑。
(2)從圓中割線和切線的變化聯(lián)系,推廣到一般曲線中用割線逼近的方法直觀定義切線。
(3)依據(jù)割線與切線的變化聯(lián)系,數(shù)形結(jié)合探究函數(shù)導(dǎo)數(shù)的幾何意義教案在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案的幾何意義,使學(xué)生認(rèn)識到導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象在導(dǎo)數(shù)的幾何意義教案處的切線的斜率。即:
導(dǎo)數(shù)的幾何意義教案=曲線在導(dǎo)數(shù)的幾何意義教案處切線的斜率k
在此基礎(chǔ)上,通過例題和練習(xí)使學(xué)生學(xué)會利用導(dǎo)數(shù)的幾何意義解釋實(shí)際生活問題,加深對導(dǎo)數(shù)內(nèi)涵的理解。在學(xué)習(xí)過程中感受逼近的思想方法,了解“以直代曲”的數(shù)學(xué)思想方法。
過程與方法目標(biāo):
(1)學(xué)生通過觀察感知、動(dòng)手探究,培養(yǎng)學(xué)生的動(dòng)手和感知發(fā)現(xiàn)的能力。
(2)學(xué)生通過對圓的切線和割線聯(lián)系的認(rèn)識,再類比探索一般曲線的情況,完善對切線的認(rèn)知,感受逼近的思想,體會相切是種局部性質(zhì)的本質(zhì),有助于數(shù)學(xué)思維能力的提高。
(3)結(jié)合分層的探究問題和分層練習(xí),期望各種層次的學(xué)生都可以憑借自己的能力盡力走在教師的前面,獨(dú)立解決問題和發(fā)現(xiàn)新知、應(yīng)用新知。
情感、態(tài)度、價(jià)值觀:
(1)通過在探究過程中滲透逼近和以直代曲思想,使學(xué)生了解近似與精確間的辨證關(guān)系;通過有限來認(rèn)識無限,體驗(yàn)數(shù)學(xué)中轉(zhuǎn)化思想的意義和價(jià)值;
(2)在教學(xué)中向他們提供充分的從事數(shù)學(xué)活動(dòng)的機(jī)會,如:探究活動(dòng),讓學(xué)生自主探究新知,例題則采用練在講之前,講在關(guān)鍵處。在活動(dòng)中激發(fā)學(xué)生的學(xué)習(xí)潛能,促進(jìn)他們真正理解和掌握基本的數(shù)學(xué)知識技能、數(shù)學(xué)思想方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),提高綜合能力,學(xué)會學(xué)習(xí),進(jìn)一步在意志力、自信心、理性精神等情感與態(tài)度方面得到良好的發(fā)展。
教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):理解和掌握切線的新定義、導(dǎo)數(shù)的幾何意義及應(yīng)用于解決實(shí)際問題,體會數(shù)形結(jié)合、以直代曲的思想方法。
難點(diǎn):發(fā)現(xiàn)、理解及應(yīng)用導(dǎo)數(shù)的幾何意義。
教學(xué)過程
一、復(fù)習(xí)提問
1.導(dǎo)數(shù)的定義是什么?求導(dǎo)數(shù)的三個(gè)步驟是什么?求函數(shù)y=x2在x=2處的導(dǎo)數(shù).
定義:函數(shù)在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)在該點(diǎn)處的瞬時(shí)變化率。
求導(dǎo)數(shù)的步驟:
第一步:求平均變化率導(dǎo)數(shù)的幾何意義教案;
第二步:求瞬時(shí)變化率導(dǎo)數(shù)的幾何意義教案.
(即導(dǎo)數(shù)的幾何意義教案,平均變化率趨近于的確定常數(shù)就是該點(diǎn)導(dǎo)數(shù))
2.觀察函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象,平均變化率導(dǎo)數(shù)的幾何意義教案在圖形中表示什么?
生:平均變化率表示的是割線PQ的斜率.導(dǎo)數(shù)的幾何意義教案
師:這就是平均變化率(導(dǎo)數(shù)的幾何意義教案)的幾何意義,
3.瞬時(shí)變化率(導(dǎo)數(shù)的幾何意義教案)在圖中又表示什么呢?
如圖2-1,設(shè)曲線C是函數(shù)y=f(x)的圖象,點(diǎn)P(x0,y0)是曲線C上一點(diǎn).點(diǎn)Q(x0+Δx,y0+Δy)是曲線C上與點(diǎn)P鄰近的任一點(diǎn),作割線PQ,當(dāng)點(diǎn)Q沿著曲線C無限地趨近于點(diǎn)P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點(diǎn)P處的切線.
導(dǎo)數(shù)的幾何意義教案
追問:怎樣確定曲線C在點(diǎn)P的切線呢?因?yàn)镻是給定的,根據(jù)平面解析幾何中直線的點(diǎn)斜式方程的知識,只要求出切線的斜率就夠了.設(shè)割線PQ的傾斜角為導(dǎo)數(shù)的幾何意義教案,切線PT的傾斜角為導(dǎo)數(shù)的幾何意義教案,易知割線PQ的斜率為導(dǎo)數(shù)的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導(dǎo)數(shù)的幾何意義教案,即導(dǎo)數(shù)的幾何意義教案。
由導(dǎo)數(shù)的定義知導(dǎo)數(shù)的.幾何意義教案導(dǎo)數(shù)的幾何意義教案。
導(dǎo)數(shù)的幾何意義教案
由上式可知:曲線f(x)在點(diǎn)(x0,f(x0))處的切線的斜率就是y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0).今天我們就來探究導(dǎo)數(shù)的幾何意義。
C類學(xué)生回答第1題,A,B類學(xué)生回答第2題在學(xué)生回答基礎(chǔ)上教師重點(diǎn)講評第3題,然后逐步引入導(dǎo)數(shù)的幾何意義.
二、新課
1、導(dǎo)數(shù)的幾何意義:
函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0)的幾何意義,就是曲線y=f(x)在點(diǎn)(x0,f(x0))處切線的斜率.
即:導(dǎo)數(shù)的幾何意義教案
口答練習(xí):
(1)如果函數(shù)y=f(x)在已知點(diǎn)x0處的導(dǎo)數(shù)分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數(shù)圖像在對應(yīng)點(diǎn)的切線的傾斜角,并說明切線各有什么特征。
(C層學(xué)生做)
(2)已知函數(shù)y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數(shù)在各點(diǎn)的導(dǎo)數(shù).(A、B層學(xué)生做)
導(dǎo)數(shù)的幾何意義教案
2、如何用導(dǎo)數(shù)研究函數(shù)的增減?
小結(jié):附近:瞬時(shí),增減:變化率,即研究函數(shù)在該點(diǎn)處的瞬時(shí)變化率,也就是導(dǎo)數(shù)。導(dǎo)數(shù)的正負(fù)即對應(yīng)函數(shù)的增減。作出該點(diǎn)處的切線,可由切線的升降趨勢,得切線斜率的正負(fù)即導(dǎo)數(shù)的正負(fù),就可以判斷函數(shù)的增減性,體會導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。
同時(shí),結(jié)合以直代曲的思想,在某點(diǎn)附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數(shù)的增減性。都反應(yīng)了導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。
例1函數(shù)導(dǎo)數(shù)的幾何意義教案上有一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求該點(diǎn)處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案,并由此解釋函數(shù)的增減情況。
導(dǎo)數(shù)的幾何意義教案
函數(shù)在定義域上任意點(diǎn)處的瞬時(shí)變化率都是3,函數(shù)在定義域內(nèi)單調(diào)遞增。(此時(shí)任意點(diǎn)處的切線就是直線本身,斜率就是變化率)
3、利用導(dǎo)數(shù)求曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程.
例2求曲線y=x2在點(diǎn)M(2,4)處的切線方程.
解:導(dǎo)數(shù)的幾何意義教案
∴y'|x=2=2×2=4.
∴點(diǎn)M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.
由上例可歸納出求切線方程的兩個(gè)步驟:
(1)先求出函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0).
(2)根據(jù)直線方程的點(diǎn)斜式,得切線方程為y-y0=f'(x0)(x-x0).
提問:若在點(diǎn)(x0,f(x0))處切線PT的傾斜角為導(dǎo)數(shù)的幾何意義教案導(dǎo)數(shù)的幾何意義教案,求切線方程。(因?yàn)檫@時(shí)切線平行于y軸,而導(dǎo)數(shù)不存在,不能用上面方法求切線方程。根據(jù)切線定義可直接得切線方程導(dǎo)數(shù)的幾何意義教案)
(先由C類學(xué)生來回答,再由A,B補(bǔ)充.)
例3已知曲線導(dǎo)數(shù)的幾何意義教案上一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求:(1)過P點(diǎn)的切線的斜率;
(2)過P點(diǎn)的切線的方程。
解:(1)導(dǎo)數(shù)的幾何意義教案,
導(dǎo)數(shù)的幾何意義教案
y'|x=2=22=4. ∴在點(diǎn)P處的切線的斜率等于4.
(2)在點(diǎn)P處的切線方程為導(dǎo)數(shù)的幾何意義教案即12x-3y-16=0.
練習(xí):求拋物線y=x2+2在點(diǎn)M(2,6)處的切線方程.
(答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).
B類學(xué)生做題,A類學(xué)生糾錯(cuò)。
三、小結(jié)
1.導(dǎo)數(shù)的幾何意義.(C組學(xué)生回答)
2.利用導(dǎo)數(shù)求曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程的步驟.
(B組學(xué)生回答)
四、布置作業(yè)
1.求拋物線導(dǎo)數(shù)的幾何意義教案在點(diǎn)(1,1)處的切線方程。
2.求拋物線y=4x-x2在點(diǎn)A(4,0)和點(diǎn)B(2,4)處的切線的斜率,切線的方程.
3.求曲線y=2x-x3在點(diǎn)(-1,-1)處的切線的傾斜角
4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點(diǎn)的坐標(biāo); (2)拋物線在交點(diǎn)處的切線方程;
(C組學(xué)生完成1,2題;B組學(xué)生完成1,2,3題;A組學(xué)生完成2,3,4題)
教學(xué)反思:
本節(jié)內(nèi)容是在學(xué)習(xí)了“變化率問題、導(dǎo)數(shù)的概念”等知識的基礎(chǔ)上,研究導(dǎo)數(shù)的幾何意義,由于新教材未設(shè)計(jì)極限,于是我盡量采用形象直觀的方式,讓學(xué)生通過動(dòng)手作圖,自我感受整個(gè)逼近的過程,讓學(xué)生更加深刻地體會導(dǎo)數(shù)的幾何意義及“以直代曲”的思想。
本節(jié)課主要圍繞著“利用函數(shù)圖象直觀理解導(dǎo)數(shù)的幾何意義”和“利用導(dǎo)數(shù)的幾何意義解釋實(shí)際問題”兩個(gè)教學(xué)重心展開。先回憶導(dǎo)數(shù)的實(shí)際意義、數(shù)值意義,由數(shù)到形,自然引出從圖形的角度研究導(dǎo)數(shù)的幾何意義;然后,類比“平均變化率——瞬時(shí)變化率”的研究思路,運(yùn)用逼近的思想定義了曲線上某點(diǎn)的切線,再引導(dǎo)學(xué)生從數(shù)形結(jié)合的角度思考,獲得導(dǎo)數(shù)的幾何意義——“導(dǎo)數(shù)是曲線上某點(diǎn)處切線的斜率”。
完成本節(jié)課第一階段的內(nèi)容學(xué)習(xí)后,教師點(diǎn)明,利用導(dǎo)數(shù)的幾何意義,在研究實(shí)際問題時(shí),某點(diǎn)附近的曲線可以用過此點(diǎn)的切線近似代替,即“以直代曲”,從而達(dá)到“以簡單的對象刻畫復(fù)雜對象”的目的,并通過兩個(gè)例題的研究,讓學(xué)生從不同的角度完整地體驗(yàn)導(dǎo)數(shù)與切線斜率的關(guān)系,并感受導(dǎo)數(shù)應(yīng)用的廣泛性。本節(jié)課注重以學(xué)生為主體,每一個(gè)知識、每一個(gè)發(fā)現(xiàn),總設(shè)法由學(xué)生自己得出,課堂上給予學(xué)生充足的思考時(shí)間和空間,讓學(xué)生在動(dòng)手操作、動(dòng)筆演算等活動(dòng)后,再組織討論,本教師只是在關(guān)鍵處加以引導(dǎo)。從學(xué)生的作業(yè)看來,效果較好。
高中數(shù)學(xué)教案9
[核心必知]
1、預(yù)習(xí)教材,問題導(dǎo)入
根據(jù)以下提綱,預(yù)習(xí)教材P6~P9,回答下列問題、
。1)常見的程序框有哪些?
提示:終端框(起止框),輸入、輸出框,處理框,判斷框、
(2)算法的基本邏輯結(jié)構(gòu)有哪些?
提示:順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)、
2、歸納總結(jié),核心必記
(1)程序框圖
程序框圖又稱流程圖,是一種用程序框、流程線及文字說明來表示算法的圖形、
在程序框圖中,一個(gè)或幾個(gè)程序框的組合表示算法中的一個(gè)步驟;帶有方向箭頭的流程線將程序框連接起來,表示算法步驟的執(zhí)行順序、
(2)常見的程序框、流程線及各自表示的功能
圖形符號名稱功能
終端框(起止框)表示一個(gè)算法的起始和結(jié)束
輸入、輸出框表示一個(gè)算法輸入和輸出的信息
處理框(執(zhí)行框)賦值、計(jì)算
判斷框判斷某一條件是否成立,成立時(shí)在出口處標(biāo)明“是”或“Y”;不成立時(shí)標(biāo)明“否”或“N”
流程線連接程序框
○連接點(diǎn)連接程序框圖的兩部分
(3)算法的基本邏輯結(jié)構(gòu)
、偎惴ǖ娜N基本邏輯結(jié)構(gòu)
算法的三種基本邏輯結(jié)構(gòu)為順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),盡管算法千差萬別,但都是由這三種基本邏輯結(jié)構(gòu)構(gòu)成的
②順序結(jié)構(gòu)
順序結(jié)構(gòu)是由若干個(gè)依次執(zhí)行的步驟組成的這是任何一個(gè)算法都離不開的基本結(jié)構(gòu),用程序框圖表示為:
[問題思考]
。1)一個(gè)完整的程序框圖一定是以起止框開始,同時(shí)又以起止框表示結(jié)束嗎?
提示:由程序框圖的概念可知一個(gè)完整的程序框圖一定是以起止框開始,同時(shí)又以起止框表示結(jié)束、
。2)順序結(jié)構(gòu)是任何算法都離不開的基本結(jié)構(gòu)嗎?
提示:根據(jù)算法基本邏輯結(jié)構(gòu)可知順序結(jié)構(gòu)是任何算法都離不開的基本結(jié)構(gòu)、
[課前反思]
通過以上預(yù)習(xí),必須掌握的幾個(gè)知識點(diǎn):
。1)程序框圖的概念:
。2)常見的程序框、流程線及各自表示的功能:
。3)算法的三種基本邏輯結(jié)構(gòu):
。4)順序結(jié)構(gòu)的概念及其程序框圖的表示:
問題背景:計(jì)算1×2+3×4+5×6+…+99×100。
[思考1]能否設(shè)計(jì)一個(gè)算法,計(jì)算這個(gè)式子的`值。
提示:能。
[思考2]能否采用更簡潔的方式表述上述算法過程。
提示:能,利用程序框圖。
[思考3]畫程序框圖時(shí)應(yīng)遵循怎樣的規(guī)則?
名師指津:
。1)使用標(biāo)準(zhǔn)的框圖符號。
。2)框圖一般按從上到下、從左到右的方向畫。
。3)除判斷框外,其他程序框圖的符號只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn),判斷框是一個(gè)具有超過一個(gè)退出點(diǎn)的程序框。
。4)在圖形符號內(nèi)描述的語言要非常簡練清楚。
。5)流程線不要忘記畫箭頭,因?yàn)樗欠从沉鞒虉?zhí)行先后次序的,如果不畫出箭頭就難以判斷各框的執(zhí)行順序。
高中數(shù)學(xué)教案10
教學(xué)目標(biāo):1.進(jìn)一步理解線性規(guī)劃的概念;會解簡單的線性規(guī)劃問題;
2.在運(yùn)用建模和數(shù)形結(jié)合等數(shù)學(xué)思想方法分析、解決問題的過程中;提高解決問題的能力;
3.進(jìn)一步提高學(xué)生的合作意識和探究意識。
教學(xué)重點(diǎn):線性規(guī)劃的概念及其解法
教學(xué)難點(diǎn):
代數(shù)問題幾何化的過程
教學(xué)方法:啟發(fā)探究式
教學(xué)手段:運(yùn)用多媒體技術(shù)
教學(xué)過程:1.實(shí)際問題引入。
問題一:小王和小李合租了一輛小轎車外出旅游.小王駕車平均速度為每小時(shí)70公里,平均耗油量為每小時(shí)6公升;小李駕車平均速度為每小時(shí)50公里,平均耗油量為每小時(shí)4公升.現(xiàn)知道油箱內(nèi)油量為60公升,兩人駕車時(shí)間累計(jì)不能超過12小時(shí).問小王和小李分別駕車多少時(shí)間時(shí),行駛路程最遠(yuǎn)?
2.探究和討論下列問題。
(1)實(shí)際問題轉(zhuǎn)化為一個(gè)怎樣的數(shù)學(xué)問題?
(2)滿足不等式組①的條件的點(diǎn)構(gòu)成的區(qū)域如何表示?
(3)關(guān)于x、y的一個(gè)表達(dá)式z=70x+50y的幾何意義是什么?
(4)z的幾何意義是什么?
(5)z的最大值如何確定?
讓學(xué)生達(dá)成以下共識:小王駕車時(shí)間x和小李駕車時(shí)間y受到時(shí)間(12小時(shí))和油量(60公升)的限制,即
x+y≤12
6x+4y≤60 ①
x≥0
y≥0
行駛路程可以表示成關(guān)于x、y的一個(gè)表達(dá)式:z=70x+50y 由數(shù)形結(jié)合可知:經(jīng)過點(diǎn)B(6,6)的直線所對應(yīng)的z最大.
則zmax=6×70+6×50=720
結(jié)論:小王和小李分別駕車6小時(shí)時(shí),行駛路程最遠(yuǎn)為720公里.
解題反思:
問題解決過程中體現(xiàn)了那些重要的數(shù)學(xué)思想?
3.線性規(guī)劃的有關(guān)概念。
什么是“線性規(guī)劃問題”?涉及約束條件、線性約束條件、目標(biāo)函數(shù)、線性目標(biāo)函數(shù)、可行解、可行域和最優(yōu)解等概念.
4.進(jìn)一步探究線性規(guī)劃問題的解。
問題二:若小王和小李駕車平均速度為每小時(shí)60公里和40公里,其它條件不變,問小王和小李分別駕車多少時(shí)間時(shí),行駛路程最遠(yuǎn)?
要求:請你寫出約束條件、目標(biāo)函數(shù),作出可行域,求出最優(yōu)解。
問題三:如果把不等式組①中的兩個(gè)“≤”改為“≥”,是否存在最優(yōu)解?
5.小結(jié)。
(1)數(shù)學(xué)知識;(2)數(shù)學(xué)思想。
6.作業(yè)。
(1)閱讀教材:P.60-63;
(2)課后練習(xí):教材P.65-2,3;
(3)在自己生活中尋找一個(gè)簡單的線性規(guī)劃問題,寫出約束條件,確定目標(biāo)函數(shù),作出可行域,并求出最優(yōu)解。
《一個(gè)數(shù)列的研究》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo):
1.進(jìn)一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);
2.在對一個(gè)數(shù)列的'探究過程中,提高提出問題、分析問題和解決問題的能力;
3.進(jìn)一步提高問題探究意識、知識應(yīng)用意識和同伴合作意識。
教學(xué)重點(diǎn):
問題的提出與解決
教學(xué)難點(diǎn):
如何進(jìn)行問題的探究
教學(xué)方法:
啟發(fā)探究式
教學(xué)過程:
問題:已知{an}是首項(xiàng)為1,公比為 的無窮等比數(shù)列。對于數(shù)列{an},提出你的問題,并進(jìn)行研究,你能得到一些什么樣的結(jié)論?
研究方向提示:
1.?dāng)?shù)列{an}是一個(gè)等比數(shù)列,可以從等比數(shù)列角度來進(jìn)行研究;
2.研究所給數(shù)列的項(xiàng)之間的關(guān)系;
3.研究所給數(shù)列的子數(shù)列;
4.研究所給數(shù)列能構(gòu)造的新數(shù)列;
5.?dāng)?shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進(jìn)行研究;
6.研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實(shí)際意義等)。
針對學(xué)生的研究情況,對所提問題進(jìn)行歸類,選擇部分類型問題共同進(jìn)行研究、分析與解決。
課堂小結(jié):
1.研究一個(gè)數(shù)列可以從哪些方面提出問題并進(jìn)行研究?
2.你最喜歡哪位同學(xué)的研究?為什么?
課后思考題: 1.將{an}推廣為一般的無窮等比數(shù)列:1,q,q2,…,qn-1,… ,上述一些研究結(jié)論會有什么變化?
2.若將{an}改為等差數(shù)列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以進(jìn)行類比研究?
開展研究性學(xué)習(xí),培養(yǎng)問題解決能力
一、對“研究性學(xué)習(xí)”和“問題解決”的認(rèn)識 研究性學(xué)習(xí)是一種與接受性學(xué)習(xí)相對應(yīng)的學(xué)習(xí)方式,泛指學(xué)生主動(dòng)探究問題的學(xué)習(xí)。研究性學(xué)習(xí)也可以說是一種學(xué)習(xí)活動(dòng):學(xué)生在教師指導(dǎo)下,在自己的學(xué)習(xí)生活和社會生活中選擇課題,以類似科學(xué)研究的方式去主動(dòng)地獲取知識、應(yīng)用知識、解決問題。
“問題解決”(problem solving)是美國數(shù)學(xué)教育界在二十世紀(jì)八十年代的主要口號,即認(rèn)為應(yīng)當(dāng)以“問題解決”作為學(xué)校數(shù)學(xué)教育的中心。
問題解決能力是一種重要的數(shù)學(xué)能力,其核心是“創(chuàng)新精神”與“實(shí)踐能力”。在數(shù)學(xué)教學(xué)活動(dòng)中開展研究性學(xué)習(xí)是培養(yǎng)問題解決能力的主要途徑。
二、“問題解決”課堂教學(xué)模式的建構(gòu)與實(shí)踐 以研究性學(xué)習(xí)活動(dòng)為載體,以培養(yǎng)問題解決能力為核心的課堂教學(xué)模式(以下簡稱為“問題解決”課堂教學(xué)模式)試圖通過問題情境創(chuàng)設(shè),激發(fā)學(xué)生的求知欲,以獨(dú)立思考和交流討論的形式,發(fā)現(xiàn)、分析并解決問題,培養(yǎng)處理信息、獲取新知、應(yīng)用知識的能力,提高合作意識、探究意識和創(chuàng)新意識。
。ㄒ唬╆P(guān)于“問題解決”課堂教學(xué)模式
通過實(shí)施“問題解決”課堂教學(xué)模式,希望能夠達(dá)到以下的功能目標(biāo):學(xué)習(xí)發(fā)現(xiàn)問題的方法,開掘創(chuàng)造性思維潛力,培養(yǎng)主動(dòng)參與、團(tuán)結(jié)協(xié)作精神,增進(jìn)師生、同伴之間的情感交流,形成自覺運(yùn)用數(shù)學(xué)基礎(chǔ)知識、基本技能和數(shù)學(xué)思想方法分析問題、解決問題的能力和意識。
。ǘ⿺(shù)學(xué)學(xué)科中的問題解決能力的培養(yǎng)目標(biāo)
數(shù)學(xué)問題解決能力培養(yǎng)的目標(biāo)可以有不同層次的要求:會審題,會建模,會轉(zhuǎn)化,會歸類,會反思,會編題。
。ㄈ皢栴}解決”課堂教學(xué)模式的教學(xué)流程
。ㄋ模皢栴}解決”課堂教學(xué)評價(jià)標(biāo)準(zhǔn)
1. 教學(xué)目標(biāo)的確定;
2. 教學(xué)方法的選擇;
3. 問題的選擇;
4. 師生主體意識的體現(xiàn);
5.教學(xué)策略的運(yùn)用。
(五)了解學(xué)生的數(shù)學(xué)問題解決能力的途徑
(六)開展研究性學(xué)習(xí)活動(dòng)對教師的能力要求
高中數(shù)學(xué)教案11
1. 你能遵守學(xué)校的規(guī)章制度,按時(shí)上學(xué),按時(shí)完成作業(yè),書寫比較端正,課堂上你也坐得比較端正。如果在學(xué)習(xí)上能夠更加主動(dòng)一些,尋找適合自己的學(xué)習(xí)
2. 你尊敬老師、團(tuán)結(jié)同學(xué)、熱愛勞動(dòng)、關(guān)心集體,所以大家都喜歡你。能嚴(yán)格遵守學(xué)校的各項(xiàng)規(guī)章制度。學(xué)習(xí)不夠刻苦,有畏難情緒。學(xué)習(xí)方法有待改進(jìn),掌握知識不夠牢固,思維能力要進(jìn)一步培養(yǎng)和提高。學(xué)習(xí)成績比上學(xué)期有一定的進(jìn)步。平時(shí)能積極參加體育鍛煉和有益的文娛活動(dòng)。今后如果能注意分配好學(xué)習(xí)時(shí)間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學(xué)生。
3. 你性格活潑開朗,總是帶著甜甜的笑容,你能與同學(xué)友愛相處,待人有禮,能虛心接受老師的教導(dǎo)。大多數(shù)的時(shí)候你都能遵守紀(jì)律,偶爾會犯一些小錯(cuò)誤。有時(shí)上課不夠留心,還有些小動(dòng)作,你能想辦法控制自己嗎?一開學(xué)老師就發(fā)現(xiàn)你的作業(yè)干凈又整齊,你的'字清秀又漂亮。但學(xué)習(xí)成績不容樂觀,需努力提高學(xué)習(xí)成績。希望能從根本上認(rèn)識到自己的不足,在課堂上能認(rèn)真聽講,開動(dòng)腦筋,遇到問題敢于請教。
4. 你熱情大方,為人豪爽,身上透露出女生少有的霸氣,作為班干部,你會提醒同學(xué)們及時(shí)安靜,對學(xué)習(xí)態(tài)度端正,及時(shí)完成作業(yè),但是少了點(diǎn)耐心,試著把心沉下來,上課集中注意力,跟著老師的思路走,一步一個(gè)腳印,一定能走出你自己絢麗的人生!
5. 學(xué)習(xí)態(tài)度端正,效率高,合理分配時(shí)間,學(xué)習(xí)生活兩不誤,善良熱情,熱愛生活,樂于助人,與周圍同學(xué)相處關(guān)系融洽。能嚴(yán)格遵守學(xué)校的各項(xiàng)規(guī)章制度。上課能專心聽講,認(rèn)真做好筆記,課后能按時(shí)完成作業(yè)。記憶力好,自學(xué)能力較強(qiáng)。希望你能更主動(dòng)地學(xué)習(xí),多思,多問,多練,大膽向老師和同學(xué)請教,注意采用科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,一定能取得滿意的成績!
6. 作為本班的班長,你對待班級工作能夠認(rèn)真負(fù)責(zé),積極配合老師和班委工作,集體榮譽(yù)感很強(qiáng),人際關(guān)系很好,待人真誠,熱心幫助人,老師十分欣賞你的善良和聰明,希望在以后能夠積極發(fā)揮自己的所長,帶領(lǐng)全班不僅在班級管理上有進(jìn)步,而且能在學(xué)習(xí)上也能成為全班的領(lǐng)頭雁,在下學(xué)期能取得更大的進(jìn)步!
7. 身為班委的你,對工作認(rèn)真負(fù)責(zé),以身作則,性格和善,與同學(xué)關(guān)系融洽,積極參加各項(xiàng)活動(dòng),不太張揚(yáng)的你顯得穩(wěn)重和踏實(shí),在學(xué)習(xí)上,你認(rèn)真聽課,及時(shí)完成各科作業(yè),但是我總覺得你的學(xué)習(xí)還不夠主動(dòng),沒有形成自己的一套方法,若從被動(dòng)的學(xué)習(xí)中解脫出來,應(yīng)該穩(wěn)定在班級前五名啊!加油!
8. 你是個(gè)懂禮貌明事理的孩子,你能嚴(yán)格遵守班級紀(jì)律,熱愛集體,對待學(xué)習(xí)態(tài)度端正,上課能夠?qū)P穆犞v,課下能夠認(rèn)真完成作業(yè)。你的學(xué)習(xí)方法有待改進(jìn),若能做到學(xué)習(xí)時(shí)心無旁騖就好了,掌握知識也不夠牢固,思維能力要進(jìn)一步培養(yǎng)和提高。只要有恒心,有毅力,老師相信你會在各方面取得長足進(jìn)步!
9. 你為人熱情大方,能和同學(xué)友好相處。你為人正直誠懇,尊敬老師,關(guān)心班集體,待人有禮,能認(rèn)真聽從老師的教導(dǎo),自覺遵守學(xué)校的各項(xiàng)規(guī)章制度,抵制各種不良思想。有集體榮譽(yù)感,樂于為集體做事。學(xué)習(xí)刻苦,成績有所提高。上課能專心聽講,思維活躍,積極回答問題,積極思考,認(rèn)真做好筆記。今后如果能注意分配好學(xué)習(xí)時(shí)間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學(xué)生。
10. 記得和你說過,你是個(gè)太聰明的孩子,你反應(yīng)敏捷,活潑靈動(dòng)。但是做學(xué)問是需要靜下心來老老實(shí)實(shí)去鉆研的,容不得賣弄小聰明和半點(diǎn)頑皮話。要知道,學(xué)如逆水行舟,不進(jìn)則退;心似平原野馬,易放難收!望你下學(xué)期重新抖擻精神早日進(jìn)入狀態(tài),不辜負(fù)關(guān)愛你的人對你的殷殷期盼。
高中數(shù)學(xué)教案12
[學(xué)習(xí)目標(biāo)]
(1)會用坐標(biāo)法及距離公式證明Cα+β;
。2)會用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實(shí)理解上述公式間的關(guān)系與相互轉(zhuǎn)化;
。3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學(xué)習(xí)重點(diǎn)]
兩角和與差的正弦、余弦、正切公式
[學(xué)習(xí)難點(diǎn)]
余弦和角公式的推導(dǎo)
[知識結(jié)構(gòu)]
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點(diǎn)間的'距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)
2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當(dāng)α、β中有一個(gè)是的整數(shù)倍時(shí),應(yīng)首選誘導(dǎo)公式進(jìn)行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。
4、關(guān)于公式的正用、逆用及變用
高中數(shù)學(xué)教案13
。ㄒ唬┙虒W(xué)具準(zhǔn)備
直尺,投影儀.
。ǘ┙虒W(xué)目標(biāo)
1.掌握,的定義域、值域、最值、單調(diào)區(qū)間.
2.會求含有、的三角式的定義域.
。ㄈ┙虒W(xué)過程
1.設(shè)置情境
研究函數(shù)就是要討論一些性質(zhì),,是函數(shù),我們當(dāng)然也要探討它的一些屬性.本節(jié)課,我們就來研究正弦函數(shù)、余弦函數(shù)的最基本的兩條性質(zhì).
2.探索研究
師:同學(xué)們回想一下,研究一個(gè)函數(shù)常要研究它的哪些性質(zhì)?
生:定義域、值域,單調(diào)性、奇偶性、等等.
師:很好,今天我們就來探索,兩條最基本的性質(zhì)定義域、值域.(板書課題正、余弦函數(shù)的定義域、值域.)
師:請同學(xué)看投影,大家仔細(xì)觀察一下正弦、余弦曲線的圖像.
師:請同學(xué)思考以下幾個(gè)問題:
(1)正弦、余弦函數(shù)的定義域是什么?
。2)正弦、余弦函數(shù)的值域是什么?
。3)他們最值情況如何?
。4)他們的.正負(fù)值區(qū)間如何分?
(5)的解集如何?
師生一起歸納得出:
。1)正弦函數(shù)、余弦函數(shù)的定義域都是.
(2)正弦函數(shù)、余弦函數(shù)的值域都是即,,稱為正弦函數(shù)、余弦函數(shù)的有界性.
。3)取最大值、最小值情況:
正弦函數(shù),當(dāng)時(shí),()函數(shù)值取最大值1,當(dāng)時(shí),()函數(shù)值取最小值-1.
余弦函數(shù),當(dāng),()時(shí),函數(shù)值取最大值1,當(dāng),()時(shí),函數(shù)值取最小值-1.
。4)正負(fù)值區(qū)間:
()
。5)零點(diǎn):()
。ǎ
3.例題分析
【例1】求下列函數(shù)的定義域、值域:
。1);(2);(3).
解:(1),
。2)由()
又∵,∴
∴定義域?yàn)椋ǎ,值域(yàn)椋?/p>
(3)由(),又由
∴
∴定義域?yàn)椋ǎ涤驗(yàn)椋?/p>
指出:求值域應(yīng)注意用到或有界性的條件.
【例2】求下列函數(shù)的最大值,并求出最大值時(shí)的集合:
(1),;(2),;
。3)(4).
解:(1)當(dāng),即()時(shí),取得最大值
∴函數(shù)的最大值為2,取最大值時(shí)的集合為.
。2)當(dāng)時(shí),即()時(shí),取得最大值.
∴函數(shù)的最大值為1,取最大值時(shí)的集合為.
。3)若,,此時(shí)函數(shù)為常數(shù)函數(shù).
若時(shí),∴時(shí),即()時(shí),函數(shù)取最大值,
∴時(shí)函數(shù)的最大值為,取最大值時(shí)的集合為.
(4)若,則當(dāng)時(shí),函數(shù)取得最大值.
若,則,此時(shí)函數(shù)為常數(shù)函數(shù).
若,當(dāng)時(shí),函數(shù)取得最大值.
∴當(dāng)時(shí),函數(shù)取得最大值,取得最大值時(shí)的集合為;當(dāng)時(shí),函數(shù)取得最大值,取得最大值時(shí)的集合為,當(dāng)時(shí),函數(shù)無最大值.
指出:對于含參數(shù)的最大值或最小值問題,要對或的系數(shù)進(jìn)行討論.
思考:此例若改為求最小值,結(jié)果如何?
【例3】要使下列各式有意義應(yīng)滿足什么條件?
。1);(2).
解:(1)由,
∴當(dāng)時(shí),式子有意義.
。2)由,即
∴當(dāng)時(shí),式子有意義.
4.演練反饋(投影)
(1)函數(shù),的簡圖是()
(2)函數(shù)的最大值和最小值分別為()
A.2,-2 B.4,0 C.2,0 D.4,-4
。3)函數(shù)的最小值是()
A.B.-2 C.D.
(4)如果與同時(shí)有意義,則的取值范圍應(yīng)為()
A.B.C.D.或
(5)與都是增函數(shù)的區(qū)間是()
A.,B.,
C.,D.,
。6)函數(shù)的定義域________,值域________,時(shí)的集合為_________.
參考答案:1.B 2.B 3.A 4.C 5.D
6.;;
5.總結(jié)提煉
。1),的定義域均為.
。2)、的值域都是
。3)有界性:
。4)最大值或最小值都存在,且取得極值的集合為無限集.
。5)正負(fù)敬意及零點(diǎn),從圖上一目了然.
。6)單調(diào)區(qū)間也可以從圖上看出.
。ㄋ模┌鍟O(shè)計(jì)
1.定義域
2.值域
3.最值
4.正負(fù)區(qū)間
5.零點(diǎn)
例1
例2
例3
課堂練習(xí)
課后思考題:求函數(shù)的最大值和最小值及取最值時(shí)的集合
提示:
高中數(shù)學(xué)教案14
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。
掌握兩角和與差的.正、余弦公式,能用公式解決相關(guān)問題。
教學(xué)重難點(diǎn)
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學(xué)過程
復(fù)習(xí)
兩角差的余弦公式
用- B代替B看看有什么結(jié)果?
高中數(shù)學(xué)教案15
內(nèi)容分析:
1、 集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念
在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題。例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集。至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運(yùn)用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識問題、研究問題不可缺少的工具。這些可以幫助學(xué)生認(rèn)識學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)。
把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)
例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。
本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對集合的概念作了說明
然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。
這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念
學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識學(xué)習(xí)本章的意義
本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念。
集合是集合論中的原始的、不定義的概念
在開始接觸集合的概念時(shí),主要還是通過實(shí)例,對概念有一個(gè)初步認(rèn)識
教科書給出的.“一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡稱集
”這句話,只是對集合概念的描述性說明。
教學(xué)過程:
一、復(fù)習(xí)引入:
1.簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2.教材中的章頭引言;
3.集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)。
二、講解新課:
閱讀教材第一部分,問題如下:
。1)有那些概念?是如何定義的?
。2)有那些符號?是如何表示的?
。3)集合中元素的特性是什么?
(一)集合的有關(guān)概念:由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個(gè)集合,或者說,某些指定的對象集在一起就成為一個(gè)集合,也簡稱集.集合中的每個(gè)對象叫做這個(gè)集合的元素.
定義:一般地,某些指定的對象集在一起就成為一個(gè)集合.
1、集合的概念
。1)集合:某些指定的對象集在一起就形成一個(gè)集合(簡稱集)
。2)元素:集合中每個(gè)對象叫做這個(gè)集合的元素
2、常用數(shù)集及記法
。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合,記作N,N={0,1,2,…}
(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集,記作N*或N+,N*={1,2,3,…}
。3)整數(shù)集:全體整數(shù)的集合,記作Z ,Z={0,±1,±2,…}
。4)有理數(shù)集:全體有理數(shù)的集合,記作Q,Q={整數(shù)與分?jǐn)?shù)}
。5)實(shí)數(shù)集:全體實(shí)數(shù)的集合,記作R,R={數(shù)軸上所有點(diǎn)所對應(yīng)的數(shù)}
注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0
。2)非負(fù)整數(shù)集內(nèi)排除0的集,記作N*或N+
Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
3、元素對于集合的隸屬關(guān)系
。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作aA
4、集合中元素的特性
。1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可
。2)互異性:集合中的元素沒有重復(fù)
。3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……
元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
、啤啊省钡拈_口方向,不能把a(bǔ)∈A顛倒過來寫。
【高中數(shù)學(xué)教案】相關(guān)文章:
高中必修數(shù)學(xué)教案01-07
高中數(shù)學(xué)教案10-26
高中數(shù)學(xué)教案09-28
高中必修4數(shù)學(xué)教案03-13
【薦】高中數(shù)學(xué)教案11-14
高中數(shù)學(xué)教案【熱】11-15
【推薦】高中數(shù)學(xué)教案11-10
高中數(shù)學(xué)教案【精】11-20
【熱】高中數(shù)學(xué)教案11-11