国产真实乱子伦精品,国产精品100页,美女网站色免费,国产白嫩美女免费观看,欧美精品亚洲,欧美韩国xxx,欧美性猛交xxxxxxxx软件

高中數(shù)學(xué)教案

時(shí)間:2024-07-06 12:37:35 高中數(shù)學(xué)教案 我要投稿

(優(yōu))高中數(shù)學(xué)教案

  作為一名老師,就不得不需要編寫教案,借助教案可以有效提升自己的教學(xué)能力。那么你有了解過教案嗎?以下是小編為大家整理的高中數(shù)學(xué)教案,希望能夠幫助到大家。

(優(yōu))高中數(shù)學(xué)教案

高中數(shù)學(xué)教案1

  教學(xué)目的:

 。1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

 。2)使學(xué)生初步了解“屬于”關(guān)系的意義

  (3)使學(xué)生初步了解有限集、無限集、空集的意義

  教學(xué)重點(diǎn):集合的基本概念及表示方法

  教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合

  授課類型:新授課

  課時(shí)安排:1課時(shí)

  教 具:多媒體、實(shí)物投影儀

  內(nèi)容分析:

  集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集 至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問題、研究問題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)把集合的初步知識(shí)與簡易邏輯知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。

  本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。

  這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時(shí),主要還是通過實(shí)例,對概念有一個(gè)初步認(rèn)識(shí) 教科書給出的“一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡稱集 ”這句話,只是對集合概念的描述性說明。

  教學(xué)過程:

  一、復(fù)習(xí)引入:

  1、簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

  2、教材中的章頭引言;

  3、集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);

  4.“物以類聚”,“人以群分”;

  5.教材中例子(P4)

  二、講解新課:

  閱讀教材第一部分,問題如下:

 。1)有那些概念?是如何定義的?

 。2)有那些符號(hào)?是如何表示的?

 。3)集合中元素的特性是什么?

 。ㄒ唬┘系挠嘘P(guān)概念:

  由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個(gè)集合,或者說,某些指定的.對象集在一起就成為一個(gè)集合,也簡稱集。集合中的每個(gè)對象叫做這個(gè)集合的元素。

  定義:一般地,某些指定的對象集在一起就成為一個(gè)集合.

  1、集合的概念

 。1)集合:某些指定的對象集在一起就形成一個(gè)集合(簡稱集)

 。2)元素:集合中每個(gè)對象叫做這個(gè)集合的元素

  2、常用數(shù)集及記法

 。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作N,

 。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+

  (3)整數(shù)集:全體整數(shù)的集合 記作Z ,

 。4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,

  (5)實(shí)數(shù)集:全體實(shí)數(shù)的集合 記作R

  注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0

 。2)非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

  3、元素對于集合的隸屬關(guān)系

 。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

 。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

  4、集合中元素的特性

 。1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可

  (2)互異性:集合中的元素沒有重復(fù)

 。3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>

  5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

 、啤啊省钡拈_口方向,不能把a(bǔ)∈A顛倒過來寫

  三、練習(xí)題:

  1、教材P5練習(xí)1、2

  2、下列各組對象能確定一個(gè)集合嗎?

 。1)所有很大的實(shí)數(shù) (不確定)

 。2)好心的人 (不確定)

  (3)1,2,2,3,4,5.(有重復(fù))

  3、設(shè)a,b是非零實(shí)數(shù),那么 可能取的值組成集合的元素是_—2,0,2__

  4、由實(shí)數(shù)x,-x,|x|, 所組成的集合,最多含( A )

 。ˋ)2個(gè)元素 (B)3個(gè)元素 (C)4個(gè)元素 (D)5個(gè)元素

  5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:

 。1) 當(dāng)x∈N時(shí), x∈G;

  (2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G

  證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G

  證明(2):∵x∈G,y∈G,

  ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,

  又∵ =且 不一定都是整數(shù),

  ∴ = 不一定屬于集合G

  四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)

  2、集合元素的性質(zhì):確定性,互異性,無序性

  3、常用數(shù)集的定義及記法

高中數(shù)學(xué)教案2

  教學(xué)目標(biāo):

  1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).

  2.能識(shí)別和理解簡單的框圖的功能.

  3. 能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計(jì)流程圖以解決簡單的問題.

  教學(xué)方法:

  1. 通過模仿、操作、探索,經(jīng)歷設(shè)計(jì)流程圖表達(dá)求解問題的過程,加深對流程圖的感知.

  2. 在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu).

  教學(xué)過程:

  一、問題情境

  1.情境:

  某鐵路客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的`費(fèi)用為

  其中(單位:)為行李的重量.

  試給出計(jì)算費(fèi)用(單位:元)的一個(gè)算法,并畫出流程圖.

  二、學(xué)生活動(dòng)

  學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá).

  解 算法為:

  輸入行李的重量;

  如果,那么,

  否則;

  輸出行李的重量和運(yùn)費(fèi).

  上述算法可以用流程圖表示為:

  教師邊講解邊畫出第10頁圖1-2-6.

  在上述計(jì)費(fèi)過程中,第二步進(jìn)行了判斷.

  三、建構(gòu)數(shù)學(xué)

  1.選擇結(jié)構(gòu)的概念:

  先根據(jù)條件作出判斷,再?zèng)Q定執(zhí)行哪一種

  操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).

  如圖:虛線框內(nèi)是一個(gè)選擇結(jié)構(gòu),它包含一個(gè)判斷框,當(dāng)條件成立(或稱條件為“真”)時(shí)執(zhí)行,否則執(zhí)行.

  2.說明:(1)有些問題需要按給定的條件進(jìn)行分析、比較和判斷,并按判

  斷的不同情況進(jìn)行不同的操作,這類問題的實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計(jì);

 。2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;

 。3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)

  行,但或兩個(gè)框中可以有一個(gè)是空的,即不執(zhí)行任何操作;

  (4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個(gè)進(jìn)入點(diǎn)和

  兩個(gè)退出點(diǎn).

  3.思考:教材第7頁圖所示的算法中,哪一步進(jìn)行了判斷?

高中數(shù)學(xué)教案3

  教學(xué)目標(biāo)

  1使學(xué)生理解本章的知識(shí)結(jié)構(gòu),并通過本章的知識(shí)結(jié)構(gòu)掌握本章的全部知識(shí);

  2對線段、射線、直線、角的概念及它們之間的關(guān)系有進(jìn)一步的認(rèn)識(shí);

  3掌握本章的全部定理和公理;

  4理解本章的數(shù)學(xué)思想方法;

  5了解本章的題目類型。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn)是理解本章的知識(shí)結(jié)構(gòu),掌握本章的全部定和公理;難點(diǎn)是理解本章的數(shù)學(xué)思想方法。

  教學(xué)設(shè)計(jì)過程

  一、本章的知識(shí)結(jié)構(gòu)

  二、本章中的概念

  1直線、射線、線段的概念。

  2線段的中點(diǎn)定義。

  3角的兩個(gè)定義。

  4直角、平角、周角、銳角、鈍角的概念。

  5互余與互補(bǔ)的角。

  三、本章中的公理和定理

  1直線的公理;線段的公理。

  2補(bǔ)角和余角的性質(zhì)定理。

  四、本章中的主要習(xí)題類型

  1對直線、射線、線段的概念的理解。

  例1下列說法中正確的是( )。

  A延長射線OP B延長直線CD

  C延長線段CD D反向延長直線CD

  解:C因?yàn)樯渚和直線是可以向一方或兩方無限延伸的,所以任何延長射線或直線的說法都是錯(cuò)誤的。而線段有兩個(gè)端點(diǎn),可以向兩方延長。

  例2如圖1-57中的線段共有多少條?

  解:15條,它們是:線段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,F(xiàn)G。

  2線段的和、差、倍、分。

  例3已知線段AB,延長AB到C,使AC=2BC,反向延長AB到D使AD= BC,那么線段AD是線段AC的( )。

  A.B. C. D.

  解:B如圖1-58,因?yàn)锳D是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。

  例4如圖1-59,B為線段AC上的一點(diǎn),AB=4cm,BC=3cm,M,N分別為AB,BC的中點(diǎn),求MN的長。

  解:因?yàn)锳B=4,M是AB的中點(diǎn),所以MB=2,又因?yàn)镹是BC的中點(diǎn),所以BN=1.5。則MN=2+1.5=3.5

  3角的概念性質(zhì)及角平分線。

  例5如圖1-60,已知AOC是一條直線,OD是∠AOB的.平分線,OE是∠BOC的平分線,求∠EOD的度數(shù)。

  解:因?yàn)镺D是∠AOB的平分線,所以∠BOD= ∠AOB;又因?yàn)镺E是∠BOC的平分線,所以∠BOE= ∠BOC;又∠AOB+∠BOC=180°,

  所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。

  則∠EOD=90°。

  例6如圖1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC與∠COB的度數(shù)的比是多少?

  解:因?yàn)椤螦OB=90°,又∠AOD=150°,所以∠BOD=60°。

  又∠COD=90°,所以∠COB=30°。

  則∠AOC=60°,(同角的余角相等)

  ∠AOC與∠COB的度數(shù)的比是2∶1。

  4互余與互補(bǔ)角的性質(zhì)。

  例7如圖1-62,直線AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度數(shù)。

  解:因?yàn)镃OD為直線,∠BOE=90°,∠BOD=45°,

  所以∠COE=180°-90°-45°=45°

  又AOB為直線,∠BOE=90°,∠COE=45°

  故∠COA=180°-90°-45°=45°,

  而AOB為直線,∠BOD=45°,

  因此∠AOD=180°-45°=135°。

  例8一個(gè)角是另一個(gè)角的3倍,且小有的余角與大角的余角之差為20°,求這兩個(gè)角的度數(shù)。

  解:設(shè)第一個(gè)角為x°,則另一個(gè)角為3x°,

  依題義列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。

  答:一個(gè)角為10°,另一個(gè)角為30°。

  5度分秒的換算及和、差、倍、分的計(jì)算。

  例9 (1)將4589°化成度、分、秒的形式。

  (2)將80°34′45″化成度。

  (3)計(jì)算:(36°55′40″-23°56′45″)。

  解:(1)45°53′24″。

  (2)約為8058°。

  (3)約為9°44′11″(第一步,做減法后得12°58′55″;再做乘法后得36°174′165″,可以先不進(jìn)位,做除法后得9°44′11″)

  五、本章中所學(xué)到的數(shù)學(xué)思想

  1運(yùn)動(dòng)變化的觀點(diǎn):幾何圖形不是孤立和靜止的,也應(yīng)看作不斷發(fā)展和變化的,如線段向一個(gè)方向延長,就發(fā)展成為射線;射線向另一方向延長就發(fā)展成直線。又如射線饒它的端點(diǎn)旋轉(zhuǎn)就形成角;角的終邊不斷旋轉(zhuǎn)就變化成直角、平角和周角。從圖形的運(yùn)動(dòng)中可以看到變化,從變化中看到聯(lián)系和區(qū)別及特性。

  2數(shù)形結(jié)合的思想:在幾何的知識(shí)中經(jīng)常遇到計(jì)算問題,對形的研究離不開數(shù)。正如數(shù)學(xué)家華羅庚所說:“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難如微”。本章的知識(shí)中,將線段的長度用數(shù)量表示,利用方程的方法解決余角與補(bǔ)角的問題。因此我們對幾何的學(xué)習(xí)不能與代數(shù)的學(xué)習(xí)截然分開,在形的問題難以解決時(shí),發(fā)揮數(shù)的功能,在數(shù)的問題遇到困難時(shí),畫出與它相關(guān)的圖形,都會(huì)給問題的解決帶來新的思路。從幾何的起始課,就注意數(shù)形結(jié)合,就會(huì)養(yǎng)成良好的思維習(xí)慣。

  3聯(lián)系實(shí)際,從實(shí)際事物中抽象出數(shù)學(xué)模型。數(shù)學(xué)的產(chǎn)生來源于生產(chǎn)和生活實(shí)踐,因此學(xué)習(xí)數(shù)學(xué)不能脫離實(shí)際生活,尤其是幾乎何的學(xué)習(xí)更離不開實(shí)際生活。一方面要讓學(xué)生知道本章的主要內(nèi)容是線和角,都在生活中有大量的原型存在,另一方面又要引導(dǎo)學(xué)生將所學(xué)的知識(shí)去解決某些簡單的實(shí)際問題,這才是理論聯(lián)系實(shí)際的觀點(diǎn)。

  六、本章的疑點(diǎn)和誤點(diǎn)分析

  概念在應(yīng)用中的混淆。

  例10判斷正誤:

  (1)在∠AOB的邊OA的延長線上取一點(diǎn)D。

  (2)大于90°的角是鈍角。

  (3)任何一個(gè)角都可以有余角。

  (4)∠A是銳角,則∠A的所有余角都相等。

  (5)兩個(gè)銳角的和一定小于平角。

  (6)直線MN是平角。

  (7)互補(bǔ)的兩個(gè)角的和一定等于平角。

  (8)如果一個(gè)角的補(bǔ)角是銳角,那么這個(gè)角就沒有余角。

  (9)鈍角一定大于它的補(bǔ)角。

  (10)經(jīng)過三點(diǎn)一定可以畫一條直線。

  解:(1)錯(cuò)。因?yàn)榻堑膬蛇吺巧渚,而射線是可以向一方無限延伸的,所以就不能再說射線的延長線了。

  (2)錯(cuò)。鈍角的定義是:大于直角且小于平角的角,叫做鈍角。

  (3)錯(cuò)。余角的定義是:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角互為余角。因此大于直角的角沒有余角。

  (4)對.∠A的所有余角都是90°-∠A。

  (5)對.若∠A<90°,∠B<90°則∠A+∠B<90°+90°=180°.

  (6)錯(cuò)。平角是一個(gè)角就要有頂點(diǎn),而直線上沒有表示平角頂點(diǎn)的點(diǎn)。如果在直線上標(biāo)出表示角的頂點(diǎn)的點(diǎn),就可以了。

  (7)對。符合互補(bǔ)的角的定義。

  (8)對。如果一個(gè)角的補(bǔ)角是銳角,那么這個(gè)角一定是鈍角,而鈍角是沒有余角的。

  (9)對。因?yàn)殁g角的補(bǔ)角是銳角,鈍角一定大于銳角。

  (10)錯(cuò)。這個(gè)題應(yīng)該分情況討論:如果這三點(diǎn)在同一條直線上,這個(gè)結(jié)論是正確的。如果這三個(gè)點(diǎn)不在同一條直線上,那么過這三個(gè)點(diǎn)就不能畫一條直線。

  板書設(shè)計(jì)

  回顧與反思

  (一)知識(shí)結(jié)構(gòu)(四)主要習(xí)題類型(五)本章的數(shù)學(xué)思想

  略例1 1

  · 2

  (二)本章概念· 3

  略· (六)疑誤點(diǎn)分析

  (三)本章的公理和定理·

  例9

高中數(shù)學(xué)教案4

  課題:

  等比數(shù)列的概念

  教學(xué)目標(biāo)

  1、通過教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式、

  2、使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、

  3、培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度、

  教學(xué)重點(diǎn),難點(diǎn)

  重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo)、

  教學(xué)用具

  投影儀,多媒體軟件,電腦、

  教學(xué)方法

  討論、談話法、

  教學(xué)過程

  一、提出問題

  給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn)、(幻燈片)

  ①—2,1,4,7,10,13,16,19,…

  ②8,16,32,64,128,256,…

 、1,1,1,1,1,1,1,…

 、243,81,27,9,3,1,,,…

 、31,29,27,25,23,21,19,…

 、1,—1,1,—1,1,—1,1,—1,…

 、1,—10,100,—1000,10000,—100000,…

  ⑧0,0,0,0,0,0,0,…

  由學(xué)生發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的.情況也無妨,得出定義后再考察③是否為等比數(shù)列)、

  二、講解新課

  請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題、假設(shè)每經(jīng)過一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開始有一個(gè)變形蟲,經(jīng)過一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù)

  這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列、(這里播放變形蟲分裂的多媒體軟件的第一步)

  等比數(shù)列(板書)

  1、等比數(shù)列的定義(板書)

  根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語、

  請學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例、而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是等比數(shù)列,當(dāng)時(shí),它只是等差數(shù)列,而不是等比數(shù)列、教師追問理由,引出對等比數(shù)列的認(rèn)識(shí):

  2、對定義的認(rèn)識(shí)(板書)

 。1)等比數(shù)列的首項(xiàng)不為0;

  (2)等比數(shù)列的每一項(xiàng)都不為0,即

  問題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?

  (3)公比不為0、

  用數(shù)學(xué)式子表示等比數(shù)列的定義、

  是等比數(shù)列

 、佟⒃谶@個(gè)式子的寫法上可能會(huì)有一些爭議,如寫成

  ,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為

  是等比數(shù)列?為什么不能?式子給出了數(shù)列第項(xiàng)與第

  項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式、

  3、等比數(shù)列的通項(xiàng)公式(板書)

  問題:用和表示第項(xiàng)

 、俨煌耆珰w納法

 、诏B乘法,…,,這個(gè)式子相乘得,所以(板書)

  (1)等比數(shù)列的通項(xiàng)公式得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式、(板書)

 。2)對公式的認(rèn)識(shí)

  由學(xué)生來說,最后歸結(jié):

  ①函數(shù)觀點(diǎn);

  ②方程思想(因在等差數(shù)列中已有認(rèn)識(shí),此處再復(fù)習(xí)鞏固而已)、

  這里強(qiáng)調(diào)方程思想解決問題、方程中有四個(gè)量,知三求一,這是公式最簡單的應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題)、解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

  如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。

  三、小結(jié)

  1、本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;

  2、注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

  3、用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用。

  探究活動(dòng)

  將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。

  參考答案:

  30次后,厚度為,這個(gè)厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙?jiān)俦∫恍,比如紙?、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(對數(shù)算也行)。

高中數(shù)學(xué)教案5

  猴子搬香蕉

  一個(gè)小猴子邊上有100根香蕉,它要走過50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請問它最多能把多少根香蕉搬到家里?

  解答:

  100只香蕉分兩次,一次運(yùn)50只,走1米,再回去搬另外50只,這樣走了1米的時(shí)候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時(shí)候剩下46+48只;...到16米的時(shí)候剩下(50-2×16)+(50-16)=18+34只;17米的時(shí)候剩下16+33只,共49只;然后把剩下的這49只一次運(yùn)回去,要走剩下的33米,每米吃一個(gè),到家還有16個(gè)香蕉。

  河岸的距離

  兩艘輪船在同一時(shí)刻駛離河的兩岸,一艘從A駛往B,另一艘從B開往A,其中一艘開得比另一艘快些,因此它們在距離較近的岸500公里處相遇。到達(dá)預(yù)定地點(diǎn)后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問河有多寬?

  解答:

  當(dāng)兩艘渡輪在x點(diǎn)相遇時(shí),它們距A岸500公里,此時(shí)它們走過的距離總和等于河的寬度。當(dāng)它們雙方抵達(dá)對岸時(shí),走過的總長度

  等于河寬的兩倍。在返航中,它們在z點(diǎn)相遇,這時(shí)兩船走過的距離之和等于河寬的三倍,所以每一艘渡輪現(xiàn)在所走的距離應(yīng)該等于它們第一次相遇時(shí)所走的距離的三倍。在兩船第一次相遇時(shí),有一艘渡輪走了500公里,所以當(dāng)它到達(dá)z點(diǎn)時(shí),已經(jīng)走了三倍的距離,即1500公里,這個(gè)距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時(shí)間對答案毫無影響。

  變量交換

  不使用任何其他變量,交換a,b變量的值?

  分析與解答

  a = a+b

  b = a-b

  a= a-b

  步行時(shí)間

  某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區(qū)一個(gè)小鎮(zhèn)的附近。他每次下班以后都是乘同一次市郊火車回小鎮(zhèn)。小鎮(zhèn)車站離家還有一段距離,他的私人司機(jī)總是在同一時(shí)刻從家里開出轎車,去小鎮(zhèn)車站接總裁回家。由于火車與轎車都十分準(zhǔn)時(shí),因此,火車與轎車每次都是在同一時(shí)刻到站。

  有一次,司機(jī)比以往遲了半個(gè)小時(shí)出發(fā)。溫斯頓到站后,找不到

  他的車子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車正風(fēng)馳電掣而來,立即招手示意停車,跳上車子后也顧不上罵司機(jī),命其馬上掉頭往回開。回到家中,果不出所料,他老婆大發(fā)雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長時(shí)間?

  解答:

  假如溫斯頓一直在車站等候,那么由于司機(jī)比以往晚了半小時(shí)出發(fā),因此,也將晚半小時(shí)到達(dá)車站。也就是說,溫斯頓將在車站空等半小時(shí),等他的轎車到達(dá)后坐車回家,從而他將比以往晚半小時(shí)到家。而現(xiàn)在溫斯頓只比平常晚22分鐘到家,這縮短下來的8分鐘是如果總裁在火車站死等的話,司機(jī)本來要花在從現(xiàn)在遇到溫斯頓總裁的地點(diǎn)到火車站再回到這個(gè)地點(diǎn)上的時(shí)間。這意味著,如果司機(jī)開車從現(xiàn)在遇到總裁的地點(diǎn)趕到火車站,單程所花的時(shí)間將為4分鐘。因此,如果溫斯頓等在火車站,再過4分鐘,他的轎車也到了。也就是說,他如果等在火車站,那么他也已經(jīng)等了30-4=26分鐘了。但是懼內(nèi)的溫斯頓總裁畢竟沒有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。

  因此,溫斯頓步行了26分鐘。

  付清欠款

  有四個(gè)人借錢的數(shù)目分別是這樣的:阿伊庫向貝爾借了10美元;

  貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫借了40美元。碰巧四個(gè)人都在場,決定結(jié)個(gè)賬,請問最少只需要?jiǎng)佑枚嗌倜澜鹁涂梢詫⑺星房钜淮胃肚澹?/p>

  解答:

  貝爾、查理、迪克各自拿出10美元給阿伊庫就可解決問題了。這樣的話只動(dòng)用了30美元。最笨的辦法就是用100美元來一一付清。

  貝爾必須拿出10美元的欠額,查理和迪克也一樣;而阿伊庫則要收回借出的30美元。再復(fù)雜的問題只要有條理地分析就會(huì)很簡單。養(yǎng)成經(jīng)常性地歸納整理、摸索實(shí)質(zhì)的好習(xí)慣。

  一美元紙幣

  注:美國貨幣中的硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。

  一家小店剛開始營業(yè),店堂中只有三位男顧客和一位女店主。當(dāng)這三位男士同時(shí)站起來付帳的時(shí)候,出現(xiàn)了以下的情況:

 。1)這四個(gè)人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。

  (2)這四人中沒有一人能夠兌開任何一枚硬幣。

 。3)一個(gè)叫盧的男士要付的賬單款額最大,一位叫莫的男士要

  付的帳單款額其次,一個(gè)叫內(nèi)德的男士要付的.賬單款額最小。

 。4)每個(gè)男士無論怎樣用手中所持的硬幣付賬,女店主都無法找清零錢。

  (5)如果這三位男士相互之間等值調(diào)換一下手中的硬幣,則每個(gè)人都可以付清自己的賬單而無需找零。

 。6)當(dāng)這三位男士進(jìn)行了兩次等值調(diào)換以后,他們發(fā)現(xiàn)手中的硬幣與各人自己原先所持的硬幣沒有一枚面值相同。

  (7)隨著事情的進(jìn)一步發(fā)展,又出現(xiàn)如下的情況:

  (8)在付清了賬單而且有兩位男士離開以后,留下的男士又買了一些糖果。這位男士本來可以用他手中剩下的硬幣付款,可是女店主卻無法用她現(xiàn)在所持的硬幣找清零錢。于是,這位男士用1美元的紙幣付了糖果錢,但是現(xiàn)在女店主不得不把她的全部硬幣都找給了他。

  現(xiàn)在,請你不要管那天女店主怎么會(huì)在找零上屢屢遇到麻煩,這三位男士中誰用1美元的紙幣付了糖果錢?

  解答:

  對題意的以下兩點(diǎn)這樣理解:

 。2)中不能換開任何一個(gè)硬幣,指的是如果任何一個(gè)人不能有2個(gè)5分,否則他能換1個(gè)10分硬幣。

 。6)中指如果A,B換過,并且A,C換過,這就是兩次交換。

高中數(shù)學(xué)教案6

  一、向量的概念

  1、既有又有的量叫做向量。用有向線段表示向量時(shí),有向線段的長度表示向量的,有向線段的箭頭所指的方向表示向量的

  2、叫做單位向量

  3、的向量叫做平行向量,因?yàn)槿我唤M平行向量都可以平移到同一條直線上,所以平行向量也叫做。零向量與任一向量平行

  4、且的向量叫做相等向量

  5、叫做相反向量

  二、向量的表示方法:

  幾何表示法、字母表示法、坐標(biāo)表示法

  三、向量的加減法及其坐標(biāo)運(yùn)算

  四、實(shí)數(shù)與向量的'乘積

  定義:實(shí)數(shù) λ 與向量 的積是一個(gè)向量,記作λ

  五、平面向量基本定理

  如果e1、e2是同一個(gè)平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底

  六、向量共線/平行的充要條件

  七、非零向量垂直的充要條件

  八、線段的定比分點(diǎn)

  設(shè)是上的 兩點(diǎn),p是上xx的任意一點(diǎn),則存在實(shí)數(shù),使xxx,則為點(diǎn)p分有向線段所成的比,同時(shí),稱p為有向線段的定比分點(diǎn)

  定比分點(diǎn)坐標(biāo)公式及向量式

  九、平面向量的數(shù)量積

  (1)設(shè)兩個(gè)非零向量a和b,作oa=a,ob=b,則∠aob=θ叫a與b的夾角,其范圍是[0,π],|b|cosθ叫b在a上的投影

 。2)|a||b|cosθ叫a與b的數(shù)量積,記作a·b,即 a·b=|a||b|cosθ

 。3)平面向量的數(shù)量積的坐標(biāo)表示

  十、平移

  典例解讀

  1、給出下列命題:①若|a|=|b|,則a=b;②若a,b,c,d是不共線的四點(diǎn),則ab= dc是四邊形abcd為平行四邊形的充要條件;③若a=b,b=c,則a=c;④a=b的充要條件是|a|=|b|且a∥b;⑤若a∥b,b∥c,則a∥c

  其中,正確命題的序號(hào)是xx

  2、已知a,b方向相同,且|a|=3,|b|=7,則|2a-b|=xxxx

  3、若將向量a=(2,1)繞原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn) 得到向量b,則向量b的坐標(biāo)為xx

  4、下列算式中不正確的是( )

  (a) ab+bc+ca=0 (b) ab-ac=bc

  (c) 0·ab=0 (d)λ(μa)=(λμ)a

  5、若向量a=(1,1),b=(1,-1),c=(-1,2),則c=( )

  ?函數(shù)y=x2的圖象按向量a=(2,1)平移后得到的圖象的函數(shù)表達(dá)式為( )

  (a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1

  7、平面直角坐標(biāo)系中,o為坐標(biāo)原點(diǎn),已知兩點(diǎn)a(3,1),b(-1,3),若點(diǎn)c滿足oc=αoa+βob,其中a、β∈r,且α+β=1,則點(diǎn)c的軌跡方程為( )

  (a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5

  (c)2x-y=0 (d)x+2y-5=0

  8、設(shè)p、q是四邊形abcd對角線ac、bd中點(diǎn),bc=a,da=b,則 pq=xx

  9、已知a(5,-1) b(-1,7) c(1,2),求△abc中∠a平分線長

  10、若向量a、b的坐標(biāo)滿足a+b=(-2,-1),a-b=(4,-3),則a·b等于( )

  (a)-5 (b)5 (c)7 (d)-1

  11、若a、b、c是非零的平面向量,其中任意兩個(gè)向量都不共線,則( )

  (a)(a)2·(b)2=(a·b)2 (b)|a+b|>|a-b|

  (c)(a·b)·c-(b·c)·a與b垂直 (d)(a·b)·c-(b·c)·a=0

  12、設(shè)a=(1,0),b=(1,1),且(a+λb)⊥b,則實(shí)數(shù)λ的值是( )

  (a)2 (b)0 (c)1 (d)2

  16、利用向量證明:△abc中,m為bc的中點(diǎn),則 ab2+ac2=2(am2+mb2)

  17、在三角形abc中, =(2,3), =(1,k),且三角形abc的一個(gè)內(nèi)角為直角,求實(shí)數(shù)k的值

  18、已知△abc中,a(2,-1),b(3,2),c(-3,-1),bc邊上的高為ad,求點(diǎn)d和向量

高中數(shù)學(xué)教案7

  教學(xué)目標(biāo)1.進(jìn)一步理解線性規(guī)劃的概念;會(huì)解簡單的線性規(guī)劃問題;

  2.在運(yùn)用建模和數(shù)形結(jié)合等數(shù)學(xué)思想方法分析、解決問題的過程中;提高解決問題的能力;

  3.進(jìn)一步提高學(xué)生的合作意識(shí)和探究意識(shí)。

  教學(xué)重點(diǎn):線性規(guī)劃的概念及其解法

  教學(xué)難點(diǎn)

  代數(shù)問題幾何化的過程

  教學(xué)方法:啟發(fā)探究式

  教學(xué)手段運(yùn)用多媒體技術(shù)

  教學(xué)過程:1.實(shí)際問題引入。

  問題一:小王和小李合租了一輛小轎車外出旅游.小王駕車平均速度為每小時(shí)70公里,平均耗油量為每小時(shí)6公升;小李駕車平均速度為每小時(shí)50公里,平均耗油量為每小時(shí)4公升.現(xiàn)知道油箱內(nèi)油量為60公升,兩人駕車時(shí)間累計(jì)不能超過12小時(shí).問小王和小李分別駕車多少時(shí)間時(shí),行駛路程最遠(yuǎn)?

  2.探究和討論下列問題。

  (1)實(shí)際問題轉(zhuǎn)化為一個(gè)怎樣的數(shù)學(xué)問題?

  (2)滿足不等式組①的條件的點(diǎn)構(gòu)成的區(qū)域如何表示?

  (3)關(guān)于x、y的一個(gè)表達(dá)式z=70x+50y的幾何意義是什么?

  (4)z的幾何意義是什么?

  (5)z的最大值如何確定?

  讓學(xué)生達(dá)成以下共識(shí):小王駕車時(shí)間x和小李駕車時(shí)間y受到時(shí)間(12小時(shí))和油量(60公升)的限制,即

  x+y≤12

  6x+4y≤60 ①

  x≥0

  y≥0

  行駛路程可以表示成關(guān)于x、y的一個(gè)表達(dá)式:z=70x+50y 由數(shù)形結(jié)合可知:經(jīng)過點(diǎn)B(6,6)的直線所對應(yīng)的z最大.

  則zmax=6×70+6×50=720

  結(jié)論:小王和小李分別駕車6小時(shí)時(shí),行駛路程最遠(yuǎn)為720公里.

  解題反思:

  問題解決過程中體現(xiàn)了那些重要的數(shù)學(xué)思想?

  3.線性規(guī)劃的有關(guān)概念。

  什么是“線性規(guī)劃問題”?涉及約束條件、線性約束條件、目標(biāo)函數(shù)、線性目標(biāo)函數(shù)、可行解、可行域和最優(yōu)解等概念.

  4.進(jìn)一步探究線性規(guī)劃問題的解。

  問題二:若小王和小李駕車平均速度為每小時(shí)60公里和40公里,其它條件不變,問小王和小李分別駕車多少時(shí)間時(shí),行駛路程最遠(yuǎn)?

  要求:請你寫出約束條件、目標(biāo)函數(shù),作出可行域,求出最優(yōu)解。

  問題三:如果把不等式組①中的兩個(gè)“≤”改為“≥”,是否存在最優(yōu)解?

  5.小結(jié)。

  (1)數(shù)學(xué)知識(shí);(2)數(shù)學(xué)思想。

  6.作業(yè)。

  (1)閱讀教材:P.60-63;

  (2)課后練習(xí):教材P.65-2,3;

  (3)在自己生活中尋找一個(gè)簡單的線性規(guī)劃問題,寫出約束條件,確定目標(biāo)函數(shù),作出可行域,并求出最優(yōu)解。

  《一個(gè)數(shù)列的研究》教學(xué)設(shè)計(jì)

  教學(xué)目標(biāo):

  1.進(jìn)一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);

  2.在對一個(gè)數(shù)列的探究過程中,提高提出問題、分析問題和解決問題的能力;

  3.進(jìn)一步提高問題探究意識(shí)、知識(shí)應(yīng)用意識(shí)和同伴合作意識(shí)。

  教學(xué)重點(diǎn):

  問題的提出與解決

  教學(xué)難點(diǎn):

  如何進(jìn)行問題的探究

  教學(xué)方法:

  啟發(fā)探究式

  教學(xué)過程:

  問題:已知{an}是首項(xiàng)為1,公比為 的無窮等比數(shù)列。對于數(shù)列{an},提出你的問題,并進(jìn)行研究,你能得到一些什么樣的結(jié)論?

  研究方向提示:

  1.?dāng)?shù)列{an}是一個(gè)等比數(shù)列,可以從等比數(shù)列角度來進(jìn)行研究;

  2.研究所給數(shù)列的項(xiàng)之間的關(guān)系;

  3.研究所給數(shù)列的子數(shù)列;

  4.研究所給數(shù)列能構(gòu)造的新數(shù)列;

  5.?dāng)?shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進(jìn)行研究;

  6.研究所給數(shù)列與其它知識(shí)的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實(shí)際意義等)。

  針對學(xué)生的研究情況,對所提問題進(jìn)行歸類,選擇部分類型問題共同進(jìn)行研究、分析與解決。

  課堂小結(jié):

  1.研究一個(gè)數(shù)列可以從哪些方面提出問題并進(jìn)行研究?

  2.你最喜歡哪位同學(xué)的研究?為什么?

  課后思考題: 1.將{an}推廣為一般的無窮等比數(shù)列:1,q,q2,…,qn-1,… ,上述一些研究結(jié)論會(huì)有什么變化?

  2.若將{an}改為等差數(shù)列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以進(jìn)行類比研究?

  開展研究性學(xué)習(xí),培養(yǎng)問題解決能力

  一、對“研究性學(xué)習(xí)”和“問題解決”的認(rèn)識(shí) 研究性學(xué)習(xí)是一種與接受性學(xué)習(xí)相對應(yīng)的學(xué)習(xí)方式,泛指學(xué)生主動(dòng)探究問題的學(xué)習(xí)。研究性學(xué)習(xí)也可以說是一種學(xué)習(xí)活動(dòng):學(xué)生在教師指導(dǎo)下,在自己的學(xué)習(xí)生活和社會(huì)生活中選擇課題,以類似科學(xué)研究的方式去主動(dòng)地獲取知識(shí)、應(yīng)用知識(shí)、解決問題。

  “問題解決”(problem solving)是美國數(shù)學(xué)教育界在二十世紀(jì)八十年代的主要口號(hào),即認(rèn)為應(yīng)當(dāng)以“問題解決”作為學(xué)校數(shù)學(xué)教育的中心。

  問題解決能力是一種重要的數(shù)學(xué)能力,其核心是“創(chuàng)新精神”與“實(shí)踐能力”。在數(shù)學(xué)教學(xué)活動(dòng)中開展研究性學(xué)習(xí)是培養(yǎng)問題解決能力的主要途徑。

  二、“問題解決”課堂教學(xué)模式的建構(gòu)與實(shí)踐 以研究性學(xué)習(xí)活動(dòng)為載體,以培養(yǎng)問題解決能力為核心的課堂教學(xué)模式(以下簡稱為“問題解決”課堂教學(xué)模式)試圖通過問題情境創(chuàng)設(shè),激發(fā)學(xué)生的求知欲,以獨(dú)立思考和交流討論的形式,發(fā)現(xiàn)、分析并解決問題,培養(yǎng)處理信息、獲取新知、應(yīng)用知識(shí)的能力,提高合作意識(shí)、探究意識(shí)和創(chuàng)新意識(shí)。

 。ㄒ唬╆P(guān)于“問題解決”課堂教學(xué)模式

  通過實(shí)施“問題解決”課堂教學(xué)模式,希望能夠達(dá)到以下的功能目標(biāo):學(xué)習(xí)發(fā)現(xiàn)問題的方法,開掘創(chuàng)造性思維潛力,培養(yǎng)主動(dòng)參與、團(tuán)結(jié)協(xié)作精神,增進(jìn)師生、同伴之間的'情感交流,形成自覺運(yùn)用數(shù)學(xué)基礎(chǔ)知識(shí)、基本技能和數(shù)學(xué)思想方法分析問題、解決問題的能力和意識(shí)。

 。ǘ⿺(shù)學(xué)學(xué)科中的問題解決能力的培養(yǎng)目標(biāo)

  數(shù)學(xué)問題解決能力培養(yǎng)的目標(biāo)可以有不同層次的要求:會(huì)審題,會(huì)建模,會(huì)轉(zhuǎn)化,會(huì)歸類,會(huì)反思,會(huì)編題。

 。ㄈ皢栴}解決”課堂教學(xué)模式的教學(xué)流程

 。ㄋ模皢栴}解決”課堂教學(xué)評(píng)價(jià)標(biāo)準(zhǔn)

  1. 教學(xué)目標(biāo)的確定;

  2. 教學(xué)方法的選擇;

  3. 問題的選擇;

  4. 師生主體意識(shí)的體現(xiàn);

  5.教學(xué)策略的運(yùn)用。

 。ㄎ澹┝私鈱W(xué)生的數(shù)學(xué)問題解決能力的途徑

  (六)開展研究性學(xué)習(xí)活動(dòng)對教師的能力要求

高中數(shù)學(xué)教案8

  【課題名稱】

  《等差數(shù)列》的導(dǎo)入

  【授課年級(jí)】

  高中二年級(jí)

  【教學(xué)重點(diǎn)】

  理解等差數(shù)列的概念,能夠運(yùn)用等差數(shù)列的定義判斷一個(gè)數(shù)列是否為等差數(shù)列。

  【教學(xué)難點(diǎn)】

  等差數(shù)列的性質(zhì)、等差數(shù)列“等差”特點(diǎn)的理解,

  【教具準(zhǔn)備】多媒體課件、投影儀

  【三維目標(biāo)】

  ㈠知識(shí)目標(biāo):

  了解公差的概念,明確一個(gè)等差數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)等差數(shù)列是否是一個(gè)等差數(shù)列;

  ㈡能力目標(biāo):

  通過尋找等差數(shù)列的共同特征,培養(yǎng)學(xué)生的觀察力以及歸納推理的能力;

  ㈢情感目標(biāo):

  通過對等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生的觀察、分析資料的能力。

  【教學(xué)過程】

  導(dǎo)入新課

  師:上兩節(jié)課我們已經(jīng)學(xué)習(xí)了數(shù)列的定義以及給出表示數(shù)列的幾種方法—列舉法、通項(xiàng)法,遞推公式、圖像法。這些方法分別從不同的角度反映了數(shù)列的特點(diǎn)。下面我們觀察以下的幾個(gè)數(shù)列的例子:

  (1)我們經(jīng)常這樣數(shù)數(shù),從0開始,每個(gè)5個(gè)數(shù)可以得到數(shù)列:0,5,10,15,20,()

  (2)2000年,在澳大利亞悉尼舉行的奧運(yùn)會(huì)上,女子舉重被正式列為比賽項(xiàng)目,該項(xiàng)目工設(shè)置了7個(gè)級(jí)別,其中較輕的4個(gè)級(jí)別體重組成的數(shù)列(單位:kg)為48,53,58,63,()試問第五個(gè)級(jí)別體重多少?

  (3)為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,水庫管理員定期放水清庫以清除水庫中的雜魚。如果一個(gè)水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個(gè)數(shù)列:18,15.5,13,10.5,8,(),則第六個(gè)數(shù)應(yīng)為多少?

  (4)10072,10144,10216,(),10360

  請同學(xué)們回答以上的四個(gè)問題

  生:第一個(gè)數(shù)列的第6項(xiàng)為25,第二個(gè)數(shù)列的第5個(gè)數(shù)為68,第三個(gè)數(shù)列的第6個(gè)數(shù)為5.5,第四個(gè)數(shù)列的第4個(gè)數(shù)為10288。

  師:我來問一下,你是依據(jù)什么得到了這幾個(gè)數(shù)的呢?請以第二個(gè)數(shù)列為例說明一下。

  生:第二個(gè)數(shù)列的后一項(xiàng)總比前一項(xiàng)多5,依據(jù)這個(gè)規(guī)律我就得到了這個(gè)數(shù)列的`第5個(gè)數(shù)為68.

  師:說的很好!同學(xué)們再仔細(xì)地觀察一下以上的四個(gè)數(shù)列,看看以上的四個(gè)數(shù)列是否有什么共同特征?請注意,是共同特征。

  生1:相鄰的兩項(xiàng)的差都等于同一個(gè)常數(shù)。

  師:很好!那作差是否有順序?是否可以顛倒?

  生2:作差的順序是后項(xiàng)減去前項(xiàng),不能顛倒!

  師:正如生1的總結(jié),這四個(gè)數(shù)列有共同的特征:從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)(即等差)。我們叫這樣的數(shù)列為等差數(shù)列。這就是我們這節(jié)課要研究的內(nèi)容。

  推進(jìn)新課

  等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等差數(shù)列的公差,公差常用字母d表示。從剛才的分析,同學(xué)們應(yīng)該注意公差d一定是由后項(xiàng)減前項(xiàng)。

  師:有哪個(gè)同學(xué)知道定義中的關(guān)鍵字是什么?

  生2:“從第二項(xiàng)起”和“同一個(gè)常數(shù)”

高中數(shù)學(xué)教案9

  一. 學(xué)習(xí)目標(biāo)

  (1)通過實(shí)例體會(huì)分布的意義與作用; (2)在表示樣本數(shù)據(jù)的過程中,學(xué)會(huì)列頻率分布表,畫頻率分布直方圖,頻率折線圖; (3)通過實(shí)例體會(huì)頻率分布直方圖,頻率折線圖,莖葉圖的各自特點(diǎn),從而恰當(dāng)?shù)倪x擇上述方法分析樣本的分布,準(zhǔn)確的作出總體估計(jì)。

  二. 學(xué)習(xí)重點(diǎn)

  三.學(xué)習(xí)難點(diǎn)

  能通過樣本的頻率分布估計(jì)總體的分布。

  四.學(xué)習(xí)過程

  (一)復(fù)習(xí)引入

  (1 )統(tǒng)計(jì)的核心問題是什么?

  (2 )隨機(jī)抽樣的幾種常用方法有哪些?

  (3)通過抽樣方法收集數(shù)據(jù)的目的是什么?

  (二)自學(xué)提綱

  1.我們學(xué)習(xí)了哪些統(tǒng)計(jì)圖?不同的統(tǒng)計(jì)圖適合描述什么樣的數(shù)據(jù)?

  2.如何列頻率分布表?

  3.如何畫頻率分布直方圖?基本步驟是什么?

  4.頻率分布直方圖的縱坐標(biāo)是什么?

  5.頻率分布直方圖中小長方形的面積表示什么?

  6.頻率分布直方圖中小長方形的面積之和是多少?

  (三)課前自測

  1.從一堆蘋果中任取了20只,并得到了它們的質(zhì)量(單位:g)數(shù)據(jù)分布表如下:

  分組 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150) 頻數(shù) 1 2 3 10 1 則這堆蘋果中,質(zhì)量不小于120g的蘋果數(shù)約占蘋果總數(shù)的xxx%. 2.關(guān)于頻率分布直方圖,下列說法正確的是( ) a.直方圖的高表示該組上的個(gè)體在樣本中出現(xiàn)的頻率 b.直方圖的高表示取某數(shù)的頻率 c.直方圖的高表示該組上的樣本中出現(xiàn)的頻率與組距的比值 d.直方圖的高表示該組上的個(gè)體在樣本中出現(xiàn)的頻數(shù)與組距的比值 3.已知樣本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,那么頻率為0.2的范圍是( ) a、5.5-7.5 b、7.5-9.5 c、9.5-11.5 d、11.5-13.5 (四)探究教學(xué) 典例:城市缺水問題(自學(xué)教材65頁~68頁)

  問題1.你認(rèn)為為了較為合理地確定出這個(gè)標(biāo)準(zhǔn),需要做哪些工作? 2.如何分析數(shù)據(jù)?根據(jù)這些數(shù)據(jù)你能得出用水量其他信息嗎? 知識(shí)整理: 1.頻率分布的概念: 頻率分布: 頻數(shù): 頻率:

  2.畫頻率分布直方圖的步驟: (1).求極差: (2).決定組距與組數(shù) 組距: 組數(shù): (3).將數(shù)據(jù)分組 (4).列頻率分布表 (5).畫頻率分布直方圖 問題: .

  1.月平均用水量在2.5—3之間的頻率是多少?

  2.月均用水量最多的在哪個(gè)區(qū)間?

  3.月均用水量小于4.5 的頻率是多少?

  4.小長方形的面積=?

  5.小長方形的面積總和=?

  6.如果希望85%以上居民不超出標(biāo)準(zhǔn),如何制定標(biāo)準(zhǔn)?

  7.直方圖有那些優(yōu)點(diǎn)和缺點(diǎn)?

  例題講解: 例1有一個(gè)容量為50的樣本數(shù)據(jù)的分組的頻數(shù)如下: [12.5, 15.5) 3 [15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11 [24.5, 27.5) 10 [27.5, 30.5) 5 [30.5, 33.5) 4 (1)列出樣本的頻率分布表; (2)畫出頻率分布直方圖; (3)根據(jù)頻率分布直方圖估計(jì),數(shù)據(jù)落在[15.5, 24.5)的百分比是多少? (4)數(shù)據(jù)小于21.5的百分比是多少?

  3.頻率分布折線圖、總體密度曲線 問題1:如何得到頻率分布折線圖 ? 頻率分布折線圖的概念:

  問題2:在城市缺水問題中將樣本容量為100,增至1000,其頻率分布直方圖的情況會(huì)有什么變化?假如增至10000呢?

  總體密度曲線的概念:

  注:用樣本分布直方圖去估計(jì)相應(yīng)的總體分布時(shí),一般樣本容量越大,頻率分布直方圖就會(huì)無限接近總體密度曲線,就越精確地反映了總體的分布規(guī)律,即越精確地反映了總體在各個(gè)范圍內(nèi)1.總體分布指的`是總體取值的頻率分布規(guī)律,由于總體分布不易知道,因此我們往往用樣本的頻率分布去估計(jì)總體的分布。

  4. 莖葉圖 莖葉圖的概念: 莖葉圖的特征:

  小結(jié):.總體的分布分兩種情況:當(dāng)總體中的個(gè)體取值很少時(shí),用莖葉圖估計(jì)總體的分布;當(dāng)總體中的個(gè)體取值較多時(shí),將樣本數(shù)據(jù)恰當(dāng)分組,用各組的頻率分布描述總體的分布,方法是用頻率分布表或頻率分布直方圖。

  課堂小結(jié):

  當(dāng)堂檢測:

  1. 一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10000人, 并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如下圖)。 為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系, 要從這10000人中再用分層抽樣方法抽出100人作進(jìn)一步 調(diào)查,則 [2500,3000)(元)月收入段應(yīng)抽取 人。

  2、為了解某校高三學(xué)生的視力情況,隨機(jī)抽查了該校200名高三學(xué)生的視力情況,得到頻率分布直方圖(如圖), 由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前四組的頻數(shù)成等比數(shù) 列,后6組的頻數(shù)成等差數(shù)列,設(shè)最多一組學(xué)生數(shù)為a,視 力在4.6到5.0之間的頻率為b,則

  a+b= . 3.在抽查產(chǎn)品的尺寸過程中,將其尺寸分成若干組,[a,b)是其中的一組,抽查出的個(gè)體在該組上的頻率為m,該組上的直方圖的高為h,則ba?=xx. 4.為了了解中學(xué)生的身高情況,對育才中學(xué)同齡的50名男學(xué)生的身高進(jìn)行了測量,結(jié)果如下:(單位:cm): 175 168 180 176 167 181 162 173 171 177 171 171 174 173 174 175 177 166 163 160 166 166 163 169 174 165 175 165 170 158 174 172 166 172 167 172 175 161 173 167 170 172 165 157 172 173 166 177 169 181

  (1)列出樣本的頻率分布表。

  (2)畫出頻率分布直方圖。

  (3)畫頻率分布折線圖;

高中數(shù)學(xué)教案10

  一、教學(xué)內(nèi)容分析

  圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度抽象,恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來熟練的解題”。

  二、學(xué)生學(xué)習(xí)情況分析

  我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。

  三、設(shè)計(jì)思想

  由于這部分知識(shí)較為抽象,如果離開感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情。在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問題、解決問題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。

  四、教學(xué)目標(biāo)

  1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

  2、通過對練習(xí),強(qiáng)化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

  3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

  五、教學(xué)重點(diǎn)與難點(diǎn):

  教學(xué)重點(diǎn)

  1、對圓錐曲線定義的理解

  2、利用圓錐曲線的定義求“最值”

  3、“定義法”求軌跡方程

  教學(xué)難點(diǎn):

  巧用圓錐曲線定義解題

  六、教學(xué)過程設(shè)計(jì)

  【設(shè)計(jì)思路】

  (一)開門見山,提出問題

  一上課,我就直截了當(dāng)?shù)亟o出例題1:

  (1)已知A(-2,0),B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是()。

  (A)橢圓(B)雙曲線(C)線段(D)不存在

  (2)已知?jiǎng)狱c(diǎn)M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是()。

  (A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

  【設(shè)計(jì)意圖】

  定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

  為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

  【學(xué)情預(yù)設(shè)】

  估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25

  這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過適當(dāng)?shù)淖冃,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

  在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長為,焦距為。以深化對概念的理解。

  (二)理解定義、解決問題

  例2:

  (1)已知?jiǎng)訄AA過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。

  (2)在(1)的'條件下,給定點(diǎn)P(-2,2),求|PA|

  【設(shè)計(jì)意圖】

  運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。

  【學(xué)情預(yù)設(shè)】

  根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個(gè)問題對學(xué)生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。

  (三)自主探究、深化認(rèn)識(shí)

  如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)。

  練習(xí):

  設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。

  引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?

  【設(shè)計(jì)意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),當(dāng)然,如果課堂上時(shí)間允許的話,

  可借助“多媒體課件”,引導(dǎo)學(xué)生對自己的結(jié)論進(jìn)行驗(yàn)證。

  【知識(shí)鏈接】

  (一)圓錐曲線的定義

  1、圓錐曲線的第一定義

  2、圓錐曲線的統(tǒng)一定義

  (二)圓錐曲線定義的應(yīng)用舉例

  1、雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準(zhǔn)線的距離。

  2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點(diǎn),F(xiàn)1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。

  3、在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。

  4、例題:

  (1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。

  (2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)|AM||MF|最小時(shí),求M點(diǎn)的坐標(biāo)。

  (3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。

  5、已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。

  七、教學(xué)反思

  1、本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢。

  2、利用兩個(gè)例題及其引申,通過一題多變,層層深入的探索,以及對猜測結(jié)果的檢測研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問題的求解到掌握一類問題的解決方法,循序漸進(jìn)的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。

  總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題,而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗(yàn),于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

高中數(shù)學(xué)教案11

  教學(xué)目標(biāo):

  1.結(jié)合實(shí)際問題情景,理解分層抽樣的必要性和重要性;

  2.學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;

  3.并對簡單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系.

  教學(xué)重點(diǎn):

  通過實(shí)例理解分層抽樣的方法.

  教學(xué)難點(diǎn):

  分層抽樣的步驟.

  教學(xué)過程:

  一、問題情境

  1.復(fù)習(xí)簡單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.

  2.實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

  二、學(xué)生活動(dòng)

  能否用簡單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?

  指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性.

  由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,

  所以在各年級(jí)抽取的個(gè)體數(shù)依次是,,,即40,32,28.

  三、建構(gòu)數(shù)學(xué)

  1.分層抽樣:當(dāng)已知總體由差異明顯的'幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

  說明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;

 、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用.

  2.三種抽樣方法對照表:

  類別

  共同點(diǎn)

  各自特點(diǎn)

  相互聯(lián)系

  適用范圍

  簡單隨機(jī)抽樣

  抽樣過程中每個(gè)個(gè)體被抽取的概率是相同的

  從總體中逐個(gè)抽取

  總體中的個(gè)體數(shù)較少

  系統(tǒng)抽樣

  將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取

  在第一部分抽樣時(shí)采用簡單隨機(jī)抽樣

  總體中的個(gè)體數(shù)較多

  分層抽樣

  將總體分成幾層,分層進(jìn)行抽取

  各層抽樣時(shí)采用簡單隨機(jī)抽樣或系統(tǒng)

  總體由差異明顯的幾部分組成

  3.分層抽樣的步驟:

  (1)分層:將總體按某種特征分成若干部分.

  (2)確定比例:計(jì)算各層的個(gè)體數(shù)與總體的個(gè)體數(shù)的比.

 。3)確定各層應(yīng)抽取的樣本容量.

 。4)在每一層進(jìn)行抽樣(各層分別按簡單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽。C合每層抽樣,組成樣本.

  四、數(shù)學(xué)運(yùn)用

  1.例題.

  例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________.

  (2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;

  ②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);

  ③某班元旦聚會(huì),要產(chǎn)生兩名“幸運(yùn)者”.

  對這三件事,合適的抽樣方法為()

  A.分層抽樣,分層抽樣,簡單隨機(jī)抽樣

  B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機(jī)抽樣

  C.分層抽樣,簡單隨機(jī)抽樣,簡單隨機(jī)抽樣

  D.系統(tǒng)抽樣,分層抽樣,簡單隨機(jī)抽樣

  例2某電視臺(tái)在因特網(wǎng)上就觀眾對某一節(jié)目的喜愛程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

  很喜愛

  喜愛

  一般

  不喜愛

  2435

  4567

  3926

  1072

  電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見,打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?

  解:抽取人數(shù)與總的比是60∶12000=1∶200,

  則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

  取近似值得各層人數(shù)分別是12,23,20,5.

  然后在各層用簡單隨機(jī)抽樣方法抽取.

  答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

  數(shù)分別為12,23,20,5.

  說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對于不能取整數(shù)的情況,取其近似值.

  (3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學(xué)校在校務(wù)公開方面的某意見,擬抽取一個(gè)容量為20的樣本.

  分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便.

 。2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.

  (3)由于學(xué)校各類人員對這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.

  五、要點(diǎn)歸納與方法小結(jié)

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.分層抽樣的概念與特征;

  2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.

高中數(shù)學(xué)教案12

  教學(xué)目的:

  掌握圓的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題

  教學(xué)重點(diǎn):

  圓的`標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用

  教學(xué)難點(diǎn):

  標(biāo)準(zhǔn)方程的靈活運(yùn)用

  教學(xué)過程:

  一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

  二、掌握知識(shí),鞏固練習(xí)

  練習(xí):

  1、說出下列圓的方程

 、艌A心(3,—2)半徑為5

  ⑵圓心(0,3)半徑為3

  2、指出下列圓的圓心和半徑

  ⑴(x—2)2+(y+3)2=3

 、苮2+y2=2

  ⑶x2+y2—6x+4y+12=0

  3、判斷3x—4y—10=0和x2+y2=4的位置關(guān)系

  4、圓心為(1,3),并與3x—4y—7=0相切,求這個(gè)圓的方程

  三、引伸提高,講解例題

  例1、圓心在y=—2x上,過p(2,—1)且與x—y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

  練習(xí):1、某圓過(—2,1)、(2,3),圓心在x軸上,求其方程。

  2、某圓過A(—10,0)、B(10,0)、C(0,4),求圓的方程。

  例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長度。

  例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)

  四、小結(jié)練習(xí)P771,2,3,4

  五、作業(yè)P811,2,3,4

高中數(shù)學(xué)教案13

  教學(xué)目標(biāo)

  (1)了解算法的含義,體會(huì)算法思想。

  (2)會(huì)用自然語言和數(shù)學(xué)語言描述簡單具體問題的算法;

  (3)學(xué)習(xí)有條理地、清晰地表達(dá)解決問題的步驟,培養(yǎng)邏輯思維能力與表達(dá)能力。

  教學(xué)重難點(diǎn)

  重點(diǎn):算法的含義、解二元一次方程組的算法設(shè)計(jì)。

  難點(diǎn):把自然語言轉(zhuǎn)化為算法語言。

  情境導(dǎo)入

  電影《神槍手》中描述的凌靖是一個(gè)天生的狙擊手,他百發(fā)百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊(duì)伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:

  第一步:觀察、等待目標(biāo)出現(xiàn)(用望遠(yuǎn)鏡或瞄準(zhǔn)鏡);

  第二步:瞄準(zhǔn)目標(biāo);

  第三步:計(jì)算(或估測)風(fēng)速、距離、空氣濕度、空氣密度;

  第四步:根據(jù)第三步的結(jié)果修正彈著點(diǎn);

  第五步:開槍;

  第六步:迅速轉(zhuǎn)移(或隱蔽)

  以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學(xué)上我們叫算法。

  課堂探究

  預(yù)習(xí)提升

  1、定義:算法可以理解為由基本運(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或序列能夠解決一類問題。

  2、描述方式

  自然語言、數(shù)學(xué)語言、形式語言(算法語言)、框圖。

  3、算法的要求

  (1)寫出的算法,必須能解決一類問題,且能重復(fù)使用;

  (2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過有限步后能得出結(jié)果。

  4、算法的特征

  (1)有限性:一個(gè)算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束。

  (2)確定性:算法的計(jì)算規(guī)則及相應(yīng)的計(jì)算步驟必須是唯一確定的。

  (3)可行性:算法中的每一個(gè)步驟都是可以在有限的時(shí)間內(nèi)完成的基本操作,并能得到確定的結(jié)果。

  (4)順序性:算法從初始步驟開始,分為若干個(gè)明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個(gè)步驟只有一個(gè)確定的后續(xù)。

  (5)不唯一性:解決同一問題的算法可以是不唯一的

  課堂典例講練

  命題方向1對算法意義的理解

  例1、下列敘述中,

  ①植樹需要運(yùn)苗、挖坑、栽苗、澆水這些步驟;

  ②按順序進(jìn)行下列運(yùn)算:1+1=2,2+1=3,3+1=4,…99+1=100;

 、蹚那鄭u乘動(dòng)車到濟(jì)南,再從濟(jì)南乘飛機(jī)到倫敦觀看奧運(yùn)會(huì)開幕式;

 、3x>x+1;

 、萸笏心鼙3整除的正數(shù),即3,6,9,12。

  能稱為算法的個(gè)數(shù)為(  )

  A、2

  B、3

  C、4

  D、5

  【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個(gè)明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。

  【答案】B

  [規(guī)律總結(jié)]

  1、正確理解算法的`概念及其特點(diǎn)是解決問題的關(guān)鍵、

  2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問題、

  【變式訓(xùn)練】下列對算法的理解不正確的是________

 、僖粋(gè)算法應(yīng)包含有限的步驟,而不能是無限的

 、谒惴ǹ梢岳斫鉃橛苫具\(yùn)算及規(guī)定的運(yùn)算順序構(gòu)成的完整的解題步驟

 、鬯惴ㄖ械拿恳徊蕉紤(yīng)當(dāng)有效地執(zhí)行,并得到確定的結(jié)果

 、芤粋(gè)問題只能設(shè)計(jì)出一個(gè)算法

  【解析】由算法的有限性指包含的步驟是有限的故①正確;

  由算法的明確性是指每一步都是確定的故②正確;

  由算法的每一步都是確定的,且每一步都應(yīng)有確定的結(jié)果故③正確;

  由對于同一個(gè)問題可以有不同的算法故④不正確。

  【答案】④

  命題方向2解方程(組)的算法

  例2、給出求解方程組的一個(gè)算法。

  [思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計(jì)算機(jī)上實(shí)現(xiàn),我們用高斯消元法(即先將方程組化為一個(gè)三角形方程組,再通過回代方程求出方程組的解)解線性方程組、

  [規(guī)范解答]方法一:算法如下:

  第一步,①×(-2)+②,得(-2+5)y=-14+11

  即方程組可化為

  第二步,解方程③,可得y=-1,④

  第三步,將④代入①,可得2x-1=7,x=4

  第四步,輸出4,-1

  方法二:算法如下:

  第一步,由①式可以得到y(tǒng)=7-2x,⑤

  第二步,把y=7-2x代入②,得x=4

  第三步,把x=4代入⑤,得y=-1

  第四步,輸出4,-1

  [規(guī)律總結(jié)]1、本題用了2種方法求解,對于問題的求解過程,我們既要強(qiáng)調(diào)對“通法、通解”的理解,又要強(qiáng)調(diào)對所學(xué)知識(shí)的靈活運(yùn)用。

  2、設(shè)計(jì)算法時(shí),經(jīng)常遇到解方程(組)的問題,一般是按照數(shù)學(xué)上解方程(組)的方法進(jìn)行設(shè)計(jì),但應(yīng)注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時(shí)有幾個(gè)解,然后根據(jù)求解步驟設(shè)計(jì)算法步驟。

  【變式訓(xùn)練】

  【解】算法如下:S1,①+2×②得5x=1;③

  S2,解③得x=;

  S3,②-①×2得5y=3;④

  S4,解④得y=;

  命題方向3篩選問題的算法設(shè)計(jì)

  例3、設(shè)計(jì)一個(gè)算法,對任意3個(gè)整數(shù)a、b、c,求出其中的最小值、

  [思路分析]比較a,b比較m與c―→最小數(shù)

  [規(guī)范解答]算法步驟如下:

  1、比較a與b的大小,若a

  2、比較m與c的大小,若m

  [規(guī)律總結(jié)]求最小(大)數(shù)就是從中篩選出最小(大)的一個(gè),篩選過程中的每一步都是比較兩個(gè)數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個(gè)不同數(shù)中篩選出滿足要求的一個(gè)。

  【變式訓(xùn)練】在下列數(shù)字序列中,寫出搜索89的算法:

  21,3,0,9,15,72,89,91,93

  [解析]1、先找到序列中的第一個(gè)數(shù)m,m=21;

  2、將m與89比較,是否相等,如果相等,則搜索到89;

  3、如果m與89不相等,則往下執(zhí)行;

  4、繼續(xù)將序列中的其他數(shù)賦給m,重復(fù)第2步,直到搜索到89。

  命題方向4非數(shù)值性問題的算法

  例4、一個(gè)人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個(gè)人和兩只動(dòng)物,沒有人在的時(shí)候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會(huì)吃掉羚羊。

  (1)設(shè)計(jì)安全渡河的算法;

  (2)思考每一步算法所遵循的共同原則是什么?

高中數(shù)學(xué)教案14

  一、教學(xué)目標(biāo)

  知識(shí)與技能:

  理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。

  過程與方法:

  會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。

  情感態(tài)度與價(jià)值觀:

  1、提高學(xué)生的推理能力;

  2、培養(yǎng)學(xué)生應(yīng)用意識(shí)。

  二、教學(xué)重點(diǎn)、難點(diǎn):

  教學(xué)重點(diǎn):

  任意角概念的理解;區(qū)間角的集合的書寫。

  教學(xué)難點(diǎn):

  終邊相同角的集合的表示;區(qū)間角的集合的書寫。

  三、教學(xué)過程

 。ㄒ唬⿲(dǎo)入新課

  1、回顧角的定義

 、俳堑牡谝环N定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角。

 、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

 。ǘ┙虒W(xué)新課

  1、角的有關(guān)概念:

 、俳堑亩x:

  角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。

  ②角的`名稱:

  注意:

 、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡化成“α ”;

 、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;

 、墙堑母拍罱(jīng)過推廣后,已包括正角、負(fù)角和零角。

  ⑤練習(xí):請說出角α、β、γ各是多少度?

  2、象限角的概念:

  ①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說這個(gè)角是第幾象限角。

  例1、如圖⑴⑵中的角分別屬于第幾象限角?

高中數(shù)學(xué)教案15

  教學(xué)目標(biāo):

  1。理解并掌握瞬時(shí)速度的定義;

  2。會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度;

  3。理解瞬時(shí)速度的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問題的能力。

  教學(xué)重點(diǎn):

  會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度。

  教學(xué)難點(diǎn):

  理解瞬時(shí)速度和瞬時(shí)加速度的定義。

  教學(xué)過程:

  一、問題情境

  1。問題情境。

  平均速度:物體的運(yùn)動(dòng)位移與所用時(shí)間的比稱為平均速度。

  問題一平均速度反映物體在某一段時(shí)間段內(nèi)運(yùn)動(dòng)的快慢程度。那么如何刻畫物體在某一時(shí)刻運(yùn)動(dòng)的快慢程度?

  問題二跳水運(yùn)動(dòng)員從10m高跳臺(tái)騰空到入水的過程中,不同時(shí)刻的速度是不同的。假設(shè)t秒后運(yùn)動(dòng)員相對于水面的.高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時(shí)運(yùn)動(dòng)員的速度.

  2。探究活動(dòng):

  (1)計(jì)算運(yùn)動(dòng)員在2s到2.1s(t∈)內(nèi)的平均速度。

  (2)計(jì)算運(yùn)動(dòng)員在2s到(2+?t)s(t∈)內(nèi)的平均速度。

  (3)如何計(jì)算運(yùn)動(dòng)員在更短時(shí)間內(nèi)的平均速度。

  探究結(jié)論:

  時(shí)間區(qū)間

  t

  平均速度

  0.1

  -13.59

  0.01

  -13.149

  0.001

  -13.1049

  0.0001

  -13.10049

  0.00001

  -13.100049

  0.000001

  -13.1000049

  當(dāng)?t?0時(shí),?-13.1,

  該常數(shù)可作為運(yùn)動(dòng)員在2s時(shí)的瞬時(shí)速度。

  即t=2s時(shí),高度對于時(shí)間的瞬時(shí)變化率。

  二、建構(gòu)數(shù)學(xué)

  1。平均速度。

  設(shè)物體作直線運(yùn)動(dòng)所經(jīng)過的路程為,以為起始時(shí)刻,物體在?t時(shí)間內(nèi)的平均速度為。

  可作為物體在時(shí)刻的速度的近似值,?t越小,近似的程度就越好。所以當(dāng)?t?0時(shí),極限就是物體在時(shí)刻的瞬時(shí)速度。

  三、數(shù)學(xué)運(yùn)用

  例1物體作自由落體運(yùn)動(dòng),運(yùn)動(dòng)方程為,其中位移單位是m,時(shí)

  間單位是s,,求:

  (1)物體在時(shí)間區(qū)間s上的平均速度;

  (2)物體在時(shí)間區(qū)間上的平均速度;

  (3)物體在t=2s時(shí)的瞬時(shí)速度。

  分析

  解

  (1)將?t=0.1代入上式,得:=2.05g=20.5m/s。

 。2)將?t=0.01代入上式,得:=2.005g=20.05m/s。

 。3)當(dāng)?t?0,2+?t?2,從而平均速度的極限為:

  例2設(shè)一輛轎車在公路上作直線運(yùn)動(dòng),假設(shè)時(shí)的速度為,

  求當(dāng)時(shí)轎車的瞬時(shí)加速度。

  解

  ∴當(dāng)?t無限趨于0時(shí),無限趨于,即=。

  練習(xí)

  課本P12—1,2。

  四、回顧小結(jié)

  問題1本節(jié)課你學(xué)到了什么?

  1理解瞬時(shí)速度和瞬時(shí)加速度的定義;

  2實(shí)際應(yīng)用問題中瞬時(shí)速度和瞬時(shí)加速度的求解;

  問題2解決瞬時(shí)速度和瞬時(shí)加速度問題需要注意什么?

  注意當(dāng)?t?0時(shí),瞬時(shí)速度和瞬時(shí)加速度的極限值。

  問題3本節(jié)課體現(xiàn)了哪些數(shù)學(xué)思想方法?

  2極限的思想方法。

  3特殊到一般、從具體到抽象的推理方法。

  五、課外作業(yè)

【高中數(shù)學(xué)教案】相關(guān)文章:

高中必修數(shù)學(xué)教案01-07

數(shù)學(xué)教案高中教學(xué)06-11

高中數(shù)學(xué)教案10-26

高中數(shù)學(xué)教案09-28

高中必修4數(shù)學(xué)教案03-13

【薦】高中數(shù)學(xué)教案11-14

高中數(shù)學(xué)教案【熱】11-15

【推薦】高中數(shù)學(xué)教案11-10

高中數(shù)學(xué)教案【精】11-20

【熱】高中數(shù)學(xué)教案11-11