高一數(shù)學教學計劃(合集15篇)
時間的腳步是無聲的,它在不經(jīng)意間流逝,迎接我們的將是新的生活,新的挑戰(zhàn),立即行動起來寫一份計劃吧。想學習擬定計劃卻不知道該請教誰?以下是小編為大家整理的高一數(shù)學教學計劃,希望對大家有所幫助。
高一數(shù)學教學計劃1
一、教材分析(結構系統(tǒng)、單元內(nèi)容、重難點)
必修5第一章:解三角形;重點是正弦定理與余弦定理;難點是正弦定理與余弦定理的應用;第二章:數(shù)列;重點是等差數(shù)列與等比數(shù)列的前n項的和;難點是等差數(shù)列與等比數(shù)列前n項的和與應用;第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規(guī)劃問題、基本不等式;難點是二元一次不等式(組)與簡單的線性規(guī)劃問題及應用;
必修2第一章:空間幾何體;重點是空間幾何體的三視圖和直觀圖及表面積與體積;難點是空間幾何體的三視圖;第二章:點、直線、平面之間的位置關系;重點與難點都是直線與平面平行及垂直的判定及其性質;第三章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當?shù)闹本方程求解題目;第四章:圓與方程;重點是圓的方程及直線與圓的位置關系;難點是直線與圓的位置關系;
二、學生分析(雙基智能水平、學習態(tài)度、方法、紀律)
較去年而言,今年的學生的素質有了比較大的提高,學生的基礎知識水平與基本學習方法比較扎實,大部分的學生對學習都有很大的興趣,學習紀律比較自覺。
三、教學目的要求
1.通過對任意三角形邊長和角度關系的'探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關的實際問題。
2.通過日常生活中的實例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù);理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項公式與前n項和的公式,能用有關的知識解決相應的問題。
3.理解不等式(組)對于刻畫不等關系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。
4.幾何學研究現(xiàn)實世界中物體的形狀、大小與位置的學科。直觀感知、操作確認、思辨論證、度量計算是認識和探索幾何圖形及其性質的方法。先從對空間幾何體的整體觀察入手,認識空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認識和理解空間中點、直線、平面之間的位置關系,并利用數(shù)學語言表述有關平行、垂直的性質與判定,對某些結論進行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標系中建立直線和圓的代數(shù)方程,運用代數(shù)方法研究它們的幾何性質及其相互關系,了解空間直角坐標系。體會數(shù)形結合的思想,初步形成用代數(shù)方法解決幾何問題的能力。
四、完成教學任務和提高教學質量的具體措施
積極做好集體備課工作,達到內(nèi)容統(tǒng)一、進度統(tǒng)一、目標統(tǒng)一、例題統(tǒng)一、習題統(tǒng)一、資料統(tǒng)一;上好每一節(jié)課,及時對學生的思想進行觀察與指導;課后進行有效的輔導;進行有效的課堂反思。
五、教學進度
周次 | 課、章、節(jié) | 教 學 內(nèi) 容 | 備 注 |
1 | 1.1,1.2 | 解三角形 | |
2 | 1.2 | 解三角形 | |
3 | 2.1,2.2 | 數(shù)列的概念與簡單表示法,等差數(shù)列 | |
4 | 2.3 | 等差數(shù)列的前n項和 | |
5 | 2.4,2.5 | 等比數(shù)列及前n項和 | |
6 | 2.5 | ||
7 | 3.1,3.2 | 不等關系與不等式,一元二次不等式及其解法 | |
8 | 3.3,3.4 | 二元一次不等式(組)與簡單線性規(guī)劃問題,基本不等式 | |
9 | 考試,復習 | ||
10 | 期中考試 | ||
11 | 1.1,1.2 | 空間幾何體的結構,三視圖,直觀圖 | |
12 | 1.3 | 空間幾何體的表面積與體積 | |
13 | 2.1,2.2 | 空間點、直線、平面的位置關系,直線、平面平行的判定及其性質 | |
14 | 2.3 | 直線、平面的判定及其性質 | |
15 | 3.1,3.2 | 直線的傾斜角與斜率,直線方程 | |
16 | 3.3 | 直線的交點坐標與距離公式 | |
17 | 4.1,4.2 | 圓的方程,直線、圓的位置關系 | |
18 | 4.3 | 空間直角坐標系 | |
19 | 復習 | ||
20 | 考試 |
高一數(shù)學教學計劃2
教學目標
1通過對冪函數(shù)概念的學習以及對冪函數(shù)圖象和性質的歸納與概括,讓學生體驗數(shù)學概念的形成過程,培養(yǎng)學生的抽象概括能力。
2使學生理解并掌握冪函數(shù)的圖象與性質,并能初步運用所學知識解決有關問題,培養(yǎng)學生的靈活思維能力。
3培養(yǎng)學生觀察、分析、歸納能力。了解類比法在研究問題中的作用。
教學重點、難點
重點:冪函數(shù)的性質及運用
難點:冪函數(shù)圖象和性質的發(fā)現(xiàn)過程
教學方法:問題探究法 教具:多媒體
教學過程
一、創(chuàng)設情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關系?
(總結:根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))
問題2:如果正方形的邊長為a,那么正方形的面積 ,這里S是a的函數(shù)。 問題3:如果正方體的邊長為a,那么正方體的體積 ,這里V是a的函數(shù)。 問題4:如果正方形場地面積為S,那么正方形的邊長 ,這里a是S的函數(shù) 問題5:如果某人 s內(nèi)騎車行進了 km,那么他騎車的速度 ,這里v是t的函數(shù)。
以上是我們生活中經(jīng)常遇到的幾個數(shù)學模型,你能發(fā)現(xiàn)以上幾個函數(shù)解析式有什么共同點嗎?(右邊指數(shù)式,且底數(shù)都是變量) 這只是我們生活中常用到的'一類函數(shù)的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當引導:從自變量所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
由學生討論,(教師可提示p=w可看成p=w1)總結,即可得出:p=w, s=a2, a=s , v=t-1都是自變量的若干次冪的形式。
教師指出:我們把這樣的都是自變量的若干次冪的形式的函數(shù)稱為冪函數(shù)。
冪函數(shù)的定義:一般地,我們把形如 的函數(shù)稱為冪函數(shù)(power function),其中 是自變量, 是常數(shù)。 1冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學生回顧指數(shù)函數(shù)的概念) 結論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學中研究的兩類重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別: 對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù) 對指數(shù)函數(shù)來說,指數(shù)是自變量,底數(shù)是常數(shù) 例1判別下列函數(shù)中有幾個冪函數(shù)?
、 y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學生獨立思考、回答)
2冪函數(shù)具有哪些性質?研究函數(shù)應該是哪些方面的內(nèi)容。前面指數(shù)函數(shù)、對數(shù)函數(shù)研究了哪些內(nèi)容?
(學生討論,教師引導。學生回答。)
3冪函數(shù)的定義域是否與對數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?
(學生小組討論,得到結論。引導學生舉例研究。結論:冪指數(shù) 不同,定義域并不完全相同,應區(qū)別對待。)教師指出:冪函數(shù)y=xn中,當n=0時,其表達式y(tǒng)=x0=1;定義域為(-∞,0)U(0,+∞),特別強調(diào),當x為任何非零實數(shù)時,函數(shù)的值均為1,圖象是從點(0,1)出發(fā),平行于x軸的兩條射線,但點(0,1)要除外。)
例2寫出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x ②y= ③y=x ④y=x
(學生解答,并歸納解決辦法。引導學生與指數(shù)函數(shù)、對數(shù)函數(shù)對照比較。引導學生具體問題具體分析,并作簡單歸納:分數(shù)指數(shù)應化成根式,負指數(shù)寫成正數(shù)指數(shù)再寫出定義域。冪函數(shù)的奇偶性也應具體分析。)
4上述函數(shù)①y=x ②y= ③y=x ④y=x 的單調(diào)性如何?如何判斷?
(學生思考,引導作圖可得。并加上y=x 和y=x-1圖象)接下來, 在同一坐標系中學生作圖,教師巡視。將學生作圖用實物投影儀演示,指出優(yōu)點和錯誤之處。教師利用幾何畫板演示。見后附圖1
讓學生觀察圖象,看單調(diào)性、以及還有哪些共同點?(學生思考,回答。教師注意學生敘述的嚴密性。)
教師總評:冪函數(shù)的性質
(1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過點(1,1),
(2)如果a>0,則冪函數(shù)的圖象通過原點,并在區(qū)間[0,+∞)上是增函數(shù),
(3)如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一區(qū)間內(nèi),當x從右邊趨向于原點時,圖象在y軸右方無限地趨近y軸;當x趨向于+∞,圖象在x軸上方無限地趨近x軸。
5通過觀察例1,在冪函數(shù)y=xa中,當a是(1)正偶數(shù)、(2)正奇數(shù)時,這一類函數(shù)有哪種性質?
學生思考,教師講評:(1)在冪函數(shù)y=xa中,當a是正偶數(shù)時,函數(shù)都是偶函數(shù),在第一象限內(nèi)是增函數(shù)。(2)在冪函數(shù)y=xa中,當a是正奇數(shù)時,函數(shù)都是奇函數(shù),在第一象限內(nèi)是增函數(shù)。
例3鞏固練習 寫出下列函數(shù)的定義域,并指出它們的奇偶性和單調(diào)性:①y=x ②y=x ③y=x 。
例4簡單應用1:比較下列各組中兩個值的大小,并說明理由:
①0.75 ,0.76 ;
②(-0.95) ,(-0.96) ;
、0.23 ,0.24 ;
、0.31 ,0.31
例5簡單應用2:冪函數(shù)y=(m -3m-3)x 在區(qū)間 上是減函數(shù),求m的值。
例6簡單應用2:
已知(a+1)<(3-2a) ,試求a的取值范圍。
課堂小結
今天的學習內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗?
1、 冪函數(shù)的概念及其指數(shù)函數(shù)表達式的區(qū)別 2、 常見冪函數(shù)的圖象和冪函數(shù)的性質。
布置作業(yè):
課本p.73 2、3、4、思考5
高一數(shù)學教學計劃3
一、學生情景分析
本學期擔任高一森林班的數(shù)學教學工作,學生共有66人,大部分學生學習習慣好,學習目標明確、勤奮、主動,學習動力足,少數(shù)同學質疑“學習是否有用”;另外,少數(shù)學生不能正確評價自我,這給教學工作帶來了必須的難度,在學習中取得長足的提高,必須要引導他們,擺正學習態(tài)度,讓他們體會到學習的樂趣,學習給他們帶來的成就感,提高他們學習的進取性,還要不斷的鼓勵他們,培養(yǎng)他們良好的學習習慣。
二、教學目標
1、由數(shù)學活動、故事等等,經(jīng)過分析問題的方法的教學,提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,構成鍥而不舍的鉆研精神和科學態(tài)度。
2、注意從實例出發(fā),從感性提高到理性,供給生活背景,經(jīng)過動手建立幾何模型,讓學生體會數(shù)學就在身邊,培養(yǎng)學數(shù)學用數(shù)學的意識。
3、獲得必要的數(shù)學基礎知識和基本技能,理解基本的.數(shù)學概念、數(shù)學結論的本質,了解概念、結論等產(chǎn)生的背景、應用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。經(jīng)過不一樣形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
4、提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本本事。
5、提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的本事,數(shù)學表達和交流的本事,發(fā)展獨立獲取數(shù)學知識的本事。
6、經(jīng)過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養(yǎng)對數(shù)學本質問題的背景事實及具體數(shù)據(jù)的記憶。發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出確定。
7、加強知識的橫向聯(lián)系,培養(yǎng)學生的數(shù)形結合的本事。
8、具有必須的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,構成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
三、教材分析
本學期學習的資料主要有集合,函數(shù)和空間幾何體,這些都是高中數(shù)學的基礎知識,其中函數(shù)更是高中數(shù)學的學習重點,也是學習其他資料的必備基礎,空間幾何是高考中不可忽略的重要部分,在教學上要注重學生的邏輯思維本事、空間想象本事的培養(yǎng)及自學本事的逐步構成。
四、教學措施
1、激發(fā)學生的學習興趣。由數(shù)學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和提高。
2、注意從實例出發(fā),從感性提高到理性;注意運用比較的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
3、加強培養(yǎng)學生的邏輯思維本事就解決實際問題的本事,以及培養(yǎng)提高學生的自學本事,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內(nèi)在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的本事。
5、自始至終貫徹教學四環(huán)節(jié),針對不一樣的教材資料選擇不一樣教法。
6、重視數(shù)學應用意識及應用本事的培養(yǎng)。
高一數(shù)學教學計劃4
教學目標 :
(1)理解子集、真子集、補集、兩個集合相等概念;
(2)了解全集、空集的意義,
(3)掌握有關的符號及表示方法,會用它們正確表示一些簡單的集合,培養(yǎng)學生的符號表示的能力;
(4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;
(5)能判斷兩集合間的包含、相等關系,并會用符號及圖形(文氏圖)準確地表示出來,培養(yǎng)學生的數(shù)學結合的數(shù)學思想;
(6)培養(yǎng)學生用集合的觀點分析問題、解決問題的能力.
教學重點:子集、補集的概念
教學難點 :弄清元素與子集、屬于與包含之間的區(qū)別
教學用具:幻燈機
教學過程 設計
(一)導入 新課
上節(jié)課我們學習了集合、元素、集合中元素的三性、元素與集合的關系等知識.
【提出問題】(投影打出)
已知 , , ,問:
1.哪些集合表示方法是列舉法.
2.哪些集合表示方法是描述法.
3.將集M、集從集P用圖示法表示.
4.分別說出各集合中的元素.
5.將每個集合中的元素與該集合的關系用符號表示出來.將集N中元素3與集M的關系用符號表示出來.
6.集M中元素與集N有何關系.集M中元素與集P有何關系.
【找學生回答】
1.集合M和集合N;(口答)
2.集合P;(口答)
3.(筆練結合板演)
4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)
5. , , , , , , , (筆練結合板演)
6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)
【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關系,而具有這種關系的兩個集合在今后學習中會經(jīng)常出現(xiàn),本節(jié)將研究有關兩個集合間關系的問題.
(二)新授知識
1.子集
(1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。
記作: 讀作:A包含于B或B包含A
當集合A不包含于集合B,或集合B不包含集合A時,則記作:A B或B A.
性質:① (任何一個集合是它本身的子集)
、 (空集是任何集合的子集)
【置疑】能否把子集說成是由原來集合中的'部分元素組成的集合?
【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.
因為B的子集也包括它本身,而這個子集是由B的全體元素組成的.空集也是B的子集,而這個集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的.
(2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。
例: ,可見,集合 ,是指A、B的所有元素完全相同.
(3)真子集:對于兩個集合A與B,如果 ,并且 ,我們就說集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。
【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集.”
集合B同它的真子集A之間的關系,可用文氏圖表示,其中兩個圓的內(nèi)部分別表示集合A,B.
【提問】
(1) 寫出數(shù)集N,Z,Q,R的包含關系,并用文氏圖表示。
(2) 判斷下列寫法是否正確
① A ② A ③ ④A A
性質:
(1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;
(2)如果 , ,則 .
例1 寫出集合 的所有子集,并指出其中哪些是它的真子集.
解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.
【注意】(1)子集與真子集符號的方向。
(2)易混符號
、佟 ”與“ ”:元素與集合之間是屬于關系;集合與集合之間是包含關系。如 R,{1} {1,2,3}
、趝0}與 :{0}是含有一個元素0的集合, 是不含任何元素的集合。
如: {0}。不能寫成 ={0}, ∈{0}
例2 見教材P8(解略)
例3 判斷下列說法是否正確,如果不正確,請加以改正.
(1) 表示空集;
(2)空集是任何集合的真子集;
(3) 不是 ;
(4) 的所有子集是 ;
(5)如果 且 ,那么B必是A的真子集;
(6) 與 不能同時成立.
解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;
(2)不正確.空集是任何非空集合的真子集;
(3)不正確. 與 表示同一集合;
(4)不正確. 的所有子集是 ;
(5)正確
(6)不正確.當 時, 與 能同時成立.
例4 用適當?shù)姆? , )填空:
(1) ; ; ;
(2) ; ;
(3) ;
(4)設 , , ,則A B C.
解:(1)0 0 ;
(2) = , ;
(3) , ∴ ;
(4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C.
【練習】教材P9
用適當?shù)姆? , )填空:
(1) ; (5) ;
(2) ; (6) ;
(3) ; (7) ;
(4) ; (8) .
解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .
提問:見教材P9例子
(二) 全集與補集
1.補集:一般地,設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作 ,即
.
A在S中的補集 可用右圖中陰影部分表示.
性質: S( SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};
(2)若A={0},則 NA=N*;
(3) RQ是無理數(shù)集。
2.全集:
如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用表示.
注: 是對于給定的全集 而言的,當全集不同時,補集也會不同.
例如:若 ,當 時, ;當 時,則 .
例5 設全集 , , ,判斷 與 之間的關系.
高一數(shù)學教學計劃5
一、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注意參透教學思想和方法,針對學生實際,不斷研究數(shù)學教學,改進教法,指導學法。
數(shù)學目標要求
1、理解集合及充要條件的有關知識,掌握不等式的性質,一元二次不等式、絕對值不等的解法,掌握函數(shù)的概念及指數(shù)函數(shù),對函數(shù)和幕函數(shù)的性質和圖象。
2、理解角的概念的推廣和三角函數(shù)的定義,掌握基本的三角函數(shù)公式和三角函數(shù)巔峰性質、圖像,理解三角函數(shù)的周期性
3、理解數(shù)列的概念,掌握等差數(shù)列和等比數(shù)列的性質,并會求等差數(shù)列、等比數(shù)列前n項的和。
4、掌握平面向量時有關概念和運算,掌握直線和圓的方程的求法。
5、掌握空間幾何直線、平面之間的位置關系及其判定方法。
6、掌握概率與統(tǒng)計初步里的計數(shù)原理,理解三種抽樣方法,會求簡單問題的概率。
二、教學建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節(jié)知識的內(nèi)外結構,熟練掌握知識和邏輯體系,細致領悟教材改革的精髓,逐步明確教材教學形式,內(nèi)容和教學目標的影響。
2、準確吧握新大綱。新大綱修改了部分內(nèi)容的教學要求層次,把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上要重視數(shù)學應用;重視教學思想方法的參透。
3、樹立以學生為主體的教育觀念。學生的發(fā)展是課程實施的出發(fā)點和歸宿,教師必須面向全體學生因材施材,以學生為賬戶提,構建新的認識體系,營造有利于學生的氛圍。
4、發(fā)揮教材的.多種教學功能。用好章頭圖,激發(fā)學生學習興趣;發(fā)揮閱讀材料的功能,培養(yǎng)學生用數(shù)學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和復習是培養(yǎng)學生自學的好材料。
5、加強課堂研究,科學設計教學方法。根據(jù)教材的內(nèi)容和特征,實行啟發(fā)式和討論式教學。發(fā)揚教學民主,師生雙方親切合作,交流互動,讓學生感受、理解知識的產(chǎn)生和發(fā)展的過程。根據(jù)材料個章節(jié)的重難點制定教學專題,積累教學經(jīng)驗。
6、落實課外活動內(nèi)容,組織和加強數(shù)學興趣小組的活動內(nèi)容,加強對高層次學生的競賽輔導,培養(yǎng)拔尖人才。
三、教學進度
高一上學期
高一下學期
周次內(nèi)容
周次內(nèi)容
1-4復習初中知識和集合1-3數(shù)列
5充要條件
4-6平面向量
6-7不等式7-9直線的方程
8-10
函數(shù)10期中考試
11
期中考試11-12圓的方程
12-14指數(shù)函數(shù)與對數(shù)函數(shù)13-15
立體幾何
15-18三角函數(shù)16-18概率與統(tǒng)計初步
19-20期末、總復習、考試19-20
總復習與期末考試
總結:制定教學計劃的主要目的是為了全面了解學生的數(shù)學學習歷程,激勵學生的學習和改進教師的教學。
高一數(shù)學教學計劃6
一、學生狀況分析
學生整體水平一般,成績以中等為主,中上不多,后進生也有一些。幾個班中,從上課一周來看,學生的學習進取性還是比較高,愛問問題的同學比較多,但由于基礎知識不太牢固,上課效率不是很高。
二、教材分析
使用北師大版《普通高中課程標準實驗教科書·數(shù)學》,教材在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關系,體現(xiàn)基礎性、時代性、典型性和可理解性等,具有親和力、問題性、科學性、思想性、應用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應用);必修2有四章(空間幾何體;點線平面間的位置關系;直線與方程;圓與方程)。
三、教學任務
本期授課資料為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。
四、教學質量目標
1、獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結論的本質,體會數(shù)學思想和方法。
2、提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本本事。
3、提高學生提出、分析和解決問題(包括簡單的實際問題)的本事,數(shù)學表達和交流的本事,發(fā)展獨立獲取數(shù)學知識的本事。
4、發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出確定。
5、提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,構成鍥而不舍的鉆研精神和科學態(tài)度。
6、具有必須的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進目標達成的重點工作
認真貫徹高中數(shù)學新課標精神,樹立新的教學理念,以“雙基”教學為主要資料,堅持“抓兩頭、帶中間、整體推進”,使每個學生的數(shù)學本事都得到提高和發(fā)展。
教學方法及推進措施
六、相關措施:
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,應對新教材的我們也是邊摸索邊改變,樹立新的教學理念,并落實在課堂教學的各個環(huán)節(jié),才能不負眾望。我們要從學生的認識水平和實際本事出發(fā),研究學生的心理特征,做好初三與高一的銜接工作,幫忙學生解決好從初中到高中學習方法的過渡。從高一齊就注意培養(yǎng)學生良好的數(shù)學思維方法,良好的學習態(tài)度和學習習慣,以適應高中領悟性的學習方法。具體措施如下:
。1)注意研究學生,做好初、高中學習方法的銜接工作。
。2)集中精力打好基礎,分項突破難點。所列基礎知識依據(jù)課程標準設計,著眼于基礎知識與重點資料,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙于過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進,使高一的數(shù)學教學與高中教學的全局有機結合。
(3)培養(yǎng)學生解答考題的本事,經(jīng)過例題,從形式和資料兩方應對所學知識進行本事方面的分析,引導學生了解數(shù)學需要哪些本事要求。
。4)讓學生經(jīng)過單元考試,檢測自我的實際應用本事,從而及時總結經(jīng)驗,找出不足,做好充分的準備
(5)抓好尖子生與后進生的輔導工作,提前展開數(shù)學奧競選拔和數(shù)學基礎輔導。
(6)重視數(shù)學應用意識及應用本事的.培養(yǎng)。
。7)重視學生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學生,增強學生學習數(shù)學興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。
(8)合理引入課題,由數(shù)學活動、故事、提問、師生交流等方式激發(fā)學生學習興趣,注意從實例出發(fā),從感性提高到理性;注意運用比較的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
。9)加強培養(yǎng)學生的邏輯思維本事和解決實際問題的本事,以及培養(yǎng)提高學生的自學本事,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
。10)抓住公式的推導和內(nèi)在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的本事。
。11)自始至終貫徹教學四環(huán)節(jié)(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學方法,把學生被動理解知識轉化主動學習知識。
七、教學進度安排:
。裕
高一數(shù)學教學計劃7
一 指導思想
為了使學生在九年義務教育數(shù)學課程的基礎上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下:
1.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
2.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力
3.發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
4.提高學習的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
二 學情分析
1. 基本情況:班共人,男生人,女生人;本班相對而言,數(shù)學尖子約人,中上等生約人,中等生約人,中下生約 人,后進生約人。
2.我所執(zhí)教的215班均屬普高班,學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養(yǎng)其自覺性。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
三 教材分析
我們采用的教材是人教版必修教材,本冊教材共分兩章:第四章《三角函數(shù)》和第五章《平面向量》。三角函數(shù)的主要內(nèi)容有:任意角的三角函數(shù)概念、弧度制、同角三角函數(shù)間的關系、誘導公式、兩角和與差的三角函數(shù)、二倍角的三角函數(shù)以及三角函數(shù)的圖象和性質、已知三角函數(shù)值求角等。難點是弧度制的概念、綜合運用本章公式進行簡單三角函數(shù)式的化簡及恒等式的證明周期函數(shù)的概念,函數(shù)y=Asin(x+)的圖象與正弦曲線的關系。平面向量主要內(nèi)容是向量及其運算和解斜三角形,向量的幾何表示和坐標表示、向量的線性運算,平面向量的數(shù)量積,平面兩點間的距離公式,線段的定比分點和中點坐標公式,平移公式,解斜三角形是本章的重點,而向量運算法則的理解和運用,已知兩邊和其中一邊的對角解斜三角形等是本章的難點。
四 教法分析
在教學過程中盡量做到以下幾個方面:
1. 選取與內(nèi)容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設能夠體現(xiàn)數(shù)學的概念和結論,數(shù)學的思想和方法,以及數(shù)學應用的學習情境,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
2. 通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
3. 在教學中強調(diào)類比,推廣,特殊化,化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
五 教學及輔導措施
1. 激發(fā)學生的學習興趣。由數(shù)學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2. 注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
3. 加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4. 抓住公式的推導和內(nèi)在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5. 自始至終貫徹教學四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6. 重視數(shù)學應用意識及應用能力的培養(yǎng)。
六 優(yōu)、差生名單及輔導措施
1. 對于優(yōu)生:學生自愿成立興趣小組,興趣小組可以在老師的指導下由學生自己不定期的開展活動,圍繞數(shù)學競賽拓展他們的知識面,加深對所學知識的理解和應用,在原有基礎上,穩(wěn)定班級在數(shù)學學習鐘的尖子學生,進一步培養(yǎng)他們自主學習的意識。
2. 對于待發(fā)展生:對于成績較差的學生,針對他們的基礎差異和個性差異,耐心細致的進行個別輔導,有問題隨時解決,并多予以鼓勵。在作業(yè)中體現(xiàn)分層。盡量做到因材施教。
七 教學進度安排
周 次 | 課時 | 內(nèi) 容 | 重 點、難 點 |
第1周 | 5 | 任意角和弧度制(2) 任意角的三角函數(shù)(3) | 了解任意角的概念和弧度制,能進行弧度與角度的互化。任意角三角函數(shù)的`定義。 |
第2周 | 5 | 同角三角函數(shù)的基本關系式(3) 三角函數(shù)的誘導公式(2) | 誘導公式的探究。運用誘導公式。 |
第3周 | 5 | 兩角和與差的正弦、余弦、正切 (5) | 兩角和與差的公式及其應用與求值、化簡 |
第4周 | 5 | 二倍角的正弦、余弦、正切 (3) 正、余弦函數(shù)的圖象(2) | 三角函數(shù)的倍角公式、和差化積公式 正、余弦函數(shù)圖象的畫法 |
第5周 | 5 | 三角函數(shù)圖象與性質(4) | 三角函數(shù)的圖象及其性質。函數(shù)思想。 |
第6周 | 5 | 函數(shù)y=sin(+)的圖象(2)、三角函數(shù)模型的簡單應用(2) | 用參數(shù)思想討論圖象的變換過程。用三角模型解決一些具有周期變化規(guī)律的實際問題。難點:實際問題抽象為三角函數(shù)模型 |
第7周 | 5 | 正切函數(shù)的圖象和性質(3) 已知三角函數(shù)值求角(2) | 正切函數(shù)的圖象和性質 反三角函數(shù)的表示 |
第8周 | 5 | 三角函數(shù)單元復習 | 知識點的復習+練習卷 |
第9周 | 5 | 平面向量的實際背景及基本概念(2)、平面向量的線性運算(2) | 向量的概念。相等向量的概念。向量的幾何表示。向量加、減法的運算及幾何意義。向量數(shù)乘運算及幾何意義。 |
第10周 | 5 | 平面向量的基本定理及坐標表示(2) 平面向量的數(shù)量積(2) | 平面向量基本定理。會用平面向量數(shù)量積的表示向量的模與夾角。 |
第11周 | 5 | 平面向量的應用舉例(2) | 用向量方法解決實際問題的方法。向量方法解決幾何問題的三步曲。 |
第12周 | 5 | 向量平移、正弦定理、余弦定理 | 向量平移的公式 |
第13周 | 5 | 簡單的三角恒等變換(3) 第三章小結(1) | 以11個公式為依據(jù),推導和差化積、積化和差等公式,會進行三角變換。 |
第14周 | 5 | 期末復習 | |
第15周 | 5 | 期末復習 | 分章歸納復習+3套模擬測試 |
高一數(shù)學教學計劃8
一、具體目標:
1、獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結論的本質,了解概念、結論等產(chǎn)生的背景、應用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。經(jīng)過不一樣形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本本事。
3、提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的本事,數(shù)學表達和交流的本事,發(fā)展獨立獲取數(shù)學知識的本事。
4、發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出確定。
5、提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,構成鍥而不舍的'鉆研精神和科學態(tài)度。
6、具有必須的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,構成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學……
二、本學期要到達的教學目標
1、雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其資料反映出來的數(shù)學思想和方法。在基本技能方面能按照必須的程序與步驟進行運算、處理數(shù)據(jù)、能使用計數(shù)器及簡單的推理、畫圖。
2、本事培養(yǎng):
能運用數(shù)學概念、思想方法,辨明數(shù)學關系,構成良好的思維品質;會根據(jù)法則、公式正確的進行運算、處理數(shù)據(jù),并能根據(jù)問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產(chǎn)和生活的數(shù)學問題,并進行交流,構成數(shù)學的意思;從而經(jīng)過獨立思考,會從數(shù)學的角度發(fā)現(xiàn)和提出問題,進行探索和研究。
3、思想教育:
培養(yǎng)高一學生,學習數(shù)學的興趣、信心和毅力及實事求是的科學態(tài)度,勇于探索創(chuàng)新的精神,及欣賞數(shù)學的美學價值,并懂的數(shù)學來源于實踐又反作用于實踐的觀點;數(shù)學中普遍存在的對立統(tǒng)一、運動變化、相互聯(lián)系、相互轉化等觀點。
三、進度授課計劃及進度表
。裕
高一數(shù)學教學計劃9
新學期已開始,為使新學期的工作有條不紊的進行,使教學工作更加科學合理,使學生對知識的接收更加得心應手,特訂新學期個人教學計劃如下
一,指導思想
加強現(xiàn)代教育理論的學習,提高自身的素質,轉變教育觀念,以教育科研為先導,以培養(yǎng)學生的創(chuàng)新精神和實踐能力為重點,深化課堂教學改革,大力推進素質教育。
二,教材分析
本冊教材具有以下幾個明顯的特點:
1。為學生的數(shù)學學習構筑起點
教科書提供了大量數(shù)學活動的線索,作為所有學生從事數(shù)學學習的出發(fā)點。目的是使學生能夠在所提供的學習情景中,通過探索與交流等活動,獲得必要的發(fā)展。
2,向學生提供現(xiàn)實,有趣,富有挑戰(zhàn)性的學習素材
教科書從學生實際出發(fā),用他們熟悉或感興趣的問題情景引入學習主題,并提供了眾多有趣而富有數(shù)學含義的問題,以展開數(shù)學探究。
3,為學生提供探索,交流的時間與空間
教科書依據(jù)學生已有的知識背景和活動經(jīng)驗,提供了大量的操作,思考與交流的機會,幫助學生通過思考與交流,梳理所學的知識,建立符合個體認知特點的知識結構。
4,展現(xiàn)數(shù)學知識的形成與應用過程
教科書采用"問題情境—建立模型—解釋,應用與拓展"的模式展開,有利于學生更好地理解數(shù)學,應用數(shù)學,增強學好數(shù)學的信心。
5,滿足不同學生的發(fā)展需求
教科書中"讀一讀"給學生以更多了解數(shù)學,研究數(shù)學的機會。教科書中的習題分為兩類:一類面向全體學生;另一類面向有更多數(shù)學需求的學生。
三,教材的重點和難點
本冊教材從內(nèi)容上看,教學重點是三角形和四邊形的性質定理
和判定定理的應用以及一元二次方程的應用。教學難點是對反
比例函數(shù)的理解及應用;用試驗或模擬試驗的方法估計一些復
雜的隨機時間發(fā)生的概率。
四,教學措施:
1,根據(jù)學生實際,創(chuàng)造性地使用教材,積極開發(fā)和利用各種教學資源,為學生提供豐富多彩的學習素材。
2,加強直觀教學,充分利用教具,學具等多媒體教學,以豐富學生感知認識對象的途徑,促使他們更加樂意接近數(shù)學,更好地理解數(shù)學。
3,關注學生的個體差異,有效的實施有差異的教學,使每個學生都能得到充分的發(fā)展。
4,加強學生學習習慣的培養(yǎng),主要培養(yǎng)學生的書寫,認真分析問題的習慣。同時注意學習態(tài)度的培養(yǎng)。
五,時間安排
4月1日——4月20日一元二次方程
5月16日——5月31日反比例函數(shù)
6月1日——6月10日頻率與概率
6月11日——7月11日復習考試
>高中數(shù)學教學計劃10
本學期我擔任高一(5)、(16)班的數(shù)學教學工作,本學期的教學工作計劃如下。
一、指導思想:
(1)隨著素質教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設服務,必須與生產(chǎn)勞動相結合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設者和接班人”的指導思想和課程理念和改革要點。使學生掌握從事社會主義現(xiàn)代化建設和進一步學習現(xiàn)代化科學技術所需要的數(shù)學知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機的使用等。
(2)培養(yǎng)學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數(shù)學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。
。3)根據(jù)數(shù)學的學科特點,加強學習目的性的教育,提高學生學習數(shù)學的自覺心和興趣,培養(yǎng)學生良好的學習習慣,實事求是的科學態(tài)度,頑強的學習毅力和獨立思考、探索創(chuàng)新的精神。
(4)使學生具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,理解數(shù)學中普遍存在著的運動、變化、相互聯(lián)系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
。5)學會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。
。6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養(yǎng),又要滲透有關高考的思想方法,為三年的學習做好準備。
二、學情分析及相關措施:
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的`生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,并落實在課堂教學的各個環(huán)節(jié),才能不負眾望。我們要從學生的認識水平和實際能力出發(fā),研究學生的心理特征,做好初三與高一的銜接工作,幫助學生解決好從初中到高中學習方法的過渡。從高一起就注意培養(yǎng)學生良好的數(shù)學思維方法,良好的學習態(tài)度和學習習慣,以適應高中領悟性的學習方法。具體措施如下:
。1)注意研究學生,做好初、高中學習方法的銜接工作。
(2)集中精力打好基礎,分項突破難點。所列基礎知識依據(jù)課程標準設計,著眼于基礎知識與重點內(nèi)容,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙于過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進,使高一的數(shù)學教學與高中教學的全局有機結合。。
。3)培養(yǎng)學生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學知識進行能力方面的分析,引導學生了解數(shù)學需要哪些能力要求。
。4)讓學生通過單元考試,檢測自己的實際應用能力,從而及時總結經(jīng)驗,找出不足,做好充分的準備
(5)抓好尖子生與后進生的輔導工作,提前展開數(shù)學奧競選拔和數(shù)學基礎輔導。
。6)注意運用現(xiàn)代化教學手段輔助數(shù)學教學;注意運用投影儀、電腦軟件等現(xiàn)代化教學手段輔助教學,提高課堂效率,激發(fā)學生學習興趣。
高一數(shù)學教學計劃10
一、教材分析(結構系統(tǒng)、單元內(nèi)容、重難點)
必修5第一章:解三角形。重點是正弦定理與余弦定理。難點是正弦定理與余弦定理的應用。第二章:數(shù)列。重點是等差數(shù)列與等比數(shù)列的前n項的和。難點是等差數(shù)列與等比數(shù)列前n項的和與應用。第三章:不等式。重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規(guī)劃問題、基本不等式。難點是二元一次不等式(組)與簡單的線性規(guī)劃問題及應用。
必修2第一章:空間幾何體。重點是空間幾何體的三視圖和直觀圖及表面積與體積。難點是空間幾何體的三視圖。第二章:點、直線、平面之間的位置關系。重點與難點都是直線與平面平行及垂直的判定及其性質。第三章:直線與方程。重點是直線的傾斜角與斜率及直線方程。難點是如何選擇恰當?shù)闹本方程求解題目。第四章:圓與方程。重點是圓的方程及直線與圓的位置關系。難點是直線與圓的位置關系。
二、學生分析(雙基智能水平、學習態(tài)度、方法、紀律)
較去年而言,今年的學生的素質有了比較大的提高,學生的基礎知識水平與基本學習方法比較扎實,大部分的學生對學習都有很大的興趣,學習紀律比較自覺。
三、教學目的要求
1、通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關的實際問題。
2、通過日常生活中的實例,了解數(shù)列的概念和幾種簡單的表示方法,了解數(shù)列是一種特殊的函數(shù)。理解等差數(shù)列、等比數(shù)列的概念,探索并掌握2種數(shù)列的通項公式與前n項和的公式,能用有關的知識解決相應的問題。
3、理解不等式(組)對于刻畫不等關系的意義和價值。掌握求解一元二次不等式的基本方法,并能解決一些實際問題。能用一元二次不等式組表示平面區(qū)域,并嘗試解決簡單的二元線性規(guī)劃問題。
4、幾何學研究現(xiàn)實世界中物體的形狀、大小與位置的學科。直觀感知、操作確認、思辨論證、度量計算是認識和探索幾何圖形及其性質的方法。先從對空間幾何體的整體觀察入手,認識空間圖形及其直觀圖的畫法。再以長方體為載體,直觀認識和理解空間中點、直線、平面之間的位置關系,并利用數(shù)學語言表述有關平行、垂直的`性質與判定,對某些結論進行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標系中建立直線和圓的代數(shù)方程,運用代數(shù)方法研究它們的幾何性質及其相互關系,了解空間直角坐標系。體會數(shù)形結合的思想,初步形成用代數(shù)方法解決幾何問題的能力。
四、完成教學任務和提高教學質量的具體措施
積極做好集體備課工作,達到內(nèi)容統(tǒng)一、進度統(tǒng)一、目標統(tǒng)一、例題統(tǒng)一、習題統(tǒng)一、資料統(tǒng)一。上好每一節(jié)課,及時對學生的思想進行觀察與指導。課后進行有效的輔導。進行有效的課堂反思。
高一數(shù)學教學計劃11
一、教學目標:
1.通過高速公路上的實際例子,引起積極的思考和交流,從而認識到生活中處處可以遇到變量間的依賴關系.能夠利用初中對函數(shù)的認識,了解依賴關系中有的是函數(shù)關系,有的則不是函數(shù)關系.
2.培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學的態(tài)度.
二、教學重點:
在于讓學生領悟生活中處處有變量,變量之間充滿了關系
教學難點:培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學的態(tài)度
三、教學方法:
探究交流法
四、教學過程
(一)、知識探索:
閱讀課文P25頁。實例:書上在高速公路情境下的問題。
在高速公路情景下,你能發(fā)現(xiàn)哪些函數(shù)關系?
2.對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關系,兩種依賴關系都有函數(shù)關系嗎?
問題小結:
1.生活中變量及變量之間的依賴關系隨處可見,并非有依賴關系的兩個變量都有函數(shù)關系,只有滿足對于一個變量的每一個值,另一個變量都有確定的值與之對應,才稱它們之間有函數(shù)關系。
2.構成函數(shù)關系的兩個變量,必須是對于自變量的每一個值,因變量都有確定的y值與之對應。
3.確定變量的依賴關系,需分清誰是自變量,誰是因變量,如果一個變量隨著另一個變量的變化而變化,那么這個變量是因變量,另一個變量是自變量。
(二)、新課探究——函數(shù)概念
1.初中關于函數(shù)的定義:
2.從集合的觀點出發(fā),函數(shù)定義:
給定兩個非空數(shù)集A和B,如果按照某個對應關系f,對于A中的任何一個數(shù)x,在集合B中都存在確定的`數(shù)f(x)與之對應,那么就把這種對應關系f叫做定義在A上的函數(shù),記作或f:A→B,或y=f(x),x∈A.;
此時x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)︱x∈A}叫作函數(shù)的值域。習慣上我們稱y是x的函數(shù)。
定義域,值域,對應法則
4.函數(shù)值
當x=a時,我們用f(a)表示函數(shù)y=f(x)的函數(shù)值。
高一數(shù)學教學計劃12
本學期我擔任高一(3)、(4)兩班的數(shù)學教學工作,兩班學生共有138人。大部分學生初中的基礎較差,整體水平不高。從上課兩周來看,學生的學習進取性還比較高,愛問問題的學生比較多;但由于基礎知識不太牢固,沒有良好的學習習慣,自控本事較差,不能正確地定位自我;所以上課效率一般,教學工作有必須的難度,為把本學期教學工作做好,制定如下教學工作計劃。
一、教學質量目標
。1)獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結論的本質,體會數(shù)學思想和方法。
(2)培養(yǎng)學生的邏輯思維本事、運算本事、空間想象本事,以及綜合運用有關數(shù)學知識分析問題和解決問題的本事。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的本事;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的本事。
。3)根據(jù)數(shù)學的學科特點,加強學習目的性的教育,提高學生學習數(shù)學的自覺心和興趣,培養(yǎng)學生良好的學習習慣,實事求是的科學態(tài)度,頑強的學習毅力和獨立思考、探索創(chuàng)新的精神。
。4)使學生具有必須的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,構成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,理解數(shù)學中普遍存在著的運動、變化、相互聯(lián)系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
。5)學會經(jīng)過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。
。6)本學期是高一的重要時期,教師承擔著雙重職責,既要不斷夯實基礎,加強綜合本事的培養(yǎng),又要滲透有關高考的思想方法,為三年的學習做好準備。
二、教學目標、
。ㄒ唬┣楦心繕
(1)經(jīng)過分析問題的方法的教學,培養(yǎng)學生的學習的興趣。
。2)供給生活背景,經(jīng)過數(shù)學建模,讓學生體會數(shù)學就在身邊,培養(yǎng)學數(shù)學用數(shù)學的意識。
。3)在探究基本函數(shù)的性質,體驗獲得數(shù)學規(guī)律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識。
。4)基于情意目標,調(diào)控教學流程,堅定學習信念和學習信心。
。5)還時間和空間給學生、還課堂給學生、還探索和發(fā)現(xiàn)權給學生,給予學生自主探索與合作交流的機會,在發(fā)展他們思維本事的同時,發(fā)展他們的數(shù)學情感、學好數(shù)學的自信心和追求數(shù)學的科學精神。
。6)讓學生體驗發(fā)現(xiàn)挫折矛盾頓悟新的發(fā)現(xiàn)這一科學發(fā)現(xiàn)歷程法。
。ǘ┍臼乱
1、培養(yǎng)學生記憶本事。
(1)經(jīng)過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養(yǎng)對數(shù)學本質問題的背景事實及具體數(shù)據(jù)的記憶。
(2)經(jīng)過揭示立體集合、函數(shù)、數(shù)列有關概念、公式和圖形的對應關系,培養(yǎng)記憶本事。
2、培養(yǎng)學生的運算本事。
。1)經(jīng)過概率的訓練,培養(yǎng)學生的運算本事。
。2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生的運算本事。
。3)經(jīng)過函數(shù)、數(shù)列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性本事。
(4)經(jīng)過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算本事,促使知識間的滲透和遷移。
(5)利用數(shù)形結合,另辟蹊徑,提高學生運算本事。
三、學情分析
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,應對新教材的我們也是邊摸索邊改變,樹立新的教學理念,并落實在課堂教學的各個環(huán)節(jié),才能不負眾望。我們要從學生的認識水平和實際本事出發(fā),研究學生的心理特征,做好初三與高一的銜接工作,幫忙學生解決好從初中到高中學習方法的過渡。從高一齊就注意培養(yǎng)學生良好的數(shù)學思維方法,良好的學習態(tài)度和學習習慣,以適應高中領悟性的學習方法。
四、促進目標達成的重點工作及措施
重點工作:
認真貫徹高中數(shù)學新課標精神,樹立新的.教學理念,以雙基教學為主要資料,堅持抓兩頭、帶中間、整體推進,使每個學生的數(shù)學本事都得到提高和發(fā)展。
分層推進措施
1、重視學生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學生,增強學生學習數(shù)學興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。
2、合理引入課題,由數(shù)學活動、故事、提問、師生交流等方式激發(fā)學生學習興趣,注意從實例出發(fā),從感性提高到理性;注意運用比較的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
3、培養(yǎng)學生解答考題的本事,經(jīng)過例題,從形式和資料兩方應對所學知識進行本事方面的分析,引導學生了解數(shù)學需要哪些本事要求。
4、讓學生經(jīng)過單元考試,檢測自我的實際應用本事,從而及時總結經(jīng)驗,找出不足,做好充分的準備
5、抓住公式的推導和內(nèi)在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的本事。
6、加強培養(yǎng)學生的邏輯思維本事和解決實際問題的本事,以及培養(yǎng)提高學生的自學本事,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育;同時重視數(shù)學應用意識及應用本事的培養(yǎng)。
7、自始至終貫徹教學四環(huán)節(jié)(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學方法,把學生被動理解知識轉化主動學習知識。
8、注意研究學生,做好初、高中學習方法的銜接工作。集中精力打好基礎,分項突破難點、所列基礎知識依據(jù)課程標準設計,著眼于基礎知識與重點資料,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙于過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進,使高一的數(shù)學教學與高中教學的全局有機結合。
高一數(shù)學教學計劃13
指導思想:
(1)隨著素質教育的深入展開,《課程方案》提出了教育要面向世界,面向未來,面向現(xiàn)代化和教育必須為社會主義現(xiàn)代化建設服務,必須與生產(chǎn)勞動相結合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設者和接班人的指導思想和課程理念和改革要點。使學生掌握從事社會主義現(xiàn)代化建設和進一步學習現(xiàn)代化科學技術所需要的數(shù)學知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機的使用等。
(2)培養(yǎng)學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數(shù)學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。
(3) 根據(jù)數(shù)學的學科特點,加強學習目的性的教育,提高學生學習數(shù)學的自覺心和興趣,培養(yǎng)學生良好的學習習慣,實事求是的科學態(tài)度,頑強的學習毅力和獨立思考、探索創(chuàng)新的精神。
(4) 使學生具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,理解數(shù)學中普遍存在著的運動、變化、相互聯(lián)系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的`重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養(yǎng),又要滲透有關高考的思想方法,為三年的學習做好準備。
學情分析及相關措施:
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,并落實在課堂教學的各個環(huán)節(jié),才能不負眾望。我們要從學生的認識水平和實際能力出發(fā),研究學生的心理特征,做好初三與高一的銜接工作,幫助學生解決好從初中到高中學習方法的過渡。從高一起就注意培養(yǎng)學生良好的數(shù)學思維方法,良好的學習態(tài)度和學習習慣,以適應高中領悟性的學習方法。具體措施如下:
(1)注意研究學生,做好初、高中學習方法的銜接工作。
(2)集中精力打好基礎,分項突破難點.所列基礎知識依據(jù)課程標準設計,著眼于基礎知識與重點內(nèi)容,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙于過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進,使高一的數(shù)學教學與高中教學的全局有機結合。.
(3)培養(yǎng)學生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學知識進行能力方面的分析,引導學生了解數(shù)學需要哪些能力要求。
(4)讓學生通過單元考試,檢測自己的實際應用能力,從而及時總結經(jīng)驗,找出不足,做好充分的準備
(5)抓好尖子生與后進生的輔導工作,提前展開數(shù)學奧競選拔和數(shù)學基礎輔導。
(6)注意運用現(xiàn)代化教學手段輔助數(shù)學教學;注意運用投影儀、電腦軟件等現(xiàn)代化教學手段輔助教學,提高課堂效率,激發(fā)學生學習興趣。
教學進度安排:
周 次 時 內(nèi) 容 重 點、難 點
第1周
9.2~9.6 5 集合的含義與表示、
集合間的基本關系、
會求兩個簡單集合的并集與交集;會求給定子集的補集;。難點:理解概念
第2周
9.7~9.13 5 集合的基本運算
函數(shù)的概念、
函數(shù)的表示法 能使用Venn圖表達集合的關系及運算,會求一些簡單函數(shù)的定義域和值域;能簡單應用
第3周
9.14~9.20 5 單調(diào)性與最值、
奇偶性、實習、小結 學會運用函數(shù)圖象理解和研究函數(shù)的性質,理解函數(shù)單調(diào)性、最大(小)值及幾何意義
第4周
9.21~9.27 5 指數(shù)與指數(shù)冪的運算、
指數(shù)函數(shù)及其性質 掌握冪的運算;探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點。難點:理解概念
第5周
9.28~10.4 5 (9月月考?、國慶放假)
第6周
10.5~10.11 5 對數(shù)與對數(shù)運算、
對數(shù)函數(shù)及其性質 理解對數(shù)的概念及其運算性質,知道用換底公式;探索并了解對數(shù)函數(shù)單調(diào)性與特殊點;知道指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)
第7周
10.12~10.18 5 冪函數(shù) 從五個具體的冪函數(shù)(y=x,y=x2, y=x3, y=x-1, y=x1/2)圖象中認識冪函數(shù)的一些性質
第8周
10.19~10.25 5 方程的根與函數(shù)零點,
二分法求方程近似解, 能夠借助計算器用二分法求相應方程的近似解;
第9周
10.26~11.1 5 幾類不同增長的模型、函數(shù)模型應用舉例 對比指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義
第10周
11.2~11.8 期中復習及考試 分章歸納復習+1套模擬測試
第11周
11.9~11.15 5 任意角和弧度制
任意角的三角函數(shù) 了解任意角的概念和弧度制,能進行弧度和度的互化;借助單位圓理解任意角三角函數(shù)的定義
第12周
11.16~11.22 5 三角函數(shù)的誘導公式
三角函數(shù)的圖像和性質 借助三角函數(shù)線推導出誘導公式,能畫出y=sinx,y=cosx,y=tanx的圖像,了解三角函數(shù)的周期性
第13周
11.23~11.29 5 函數(shù)y=Asin(wx+q)的圖像 借助圖像理解正弦函數(shù)余弦函數(shù)正切函數(shù)的性質,借助計算機畫出圖像觀察A w q對函數(shù)圖像變化的影響
第14周
11.30~12.6 5 三角函數(shù)模型的簡單應用 單元考試 會用三角函數(shù)解決一些簡單實際問題,體會三角函數(shù)是描述周期變化的重要函數(shù)模型
第15周
12.7~12.13 5 平面向量的實際背景及基本概念,平面向量的線性運算 掌握向量加、減法的運算,理解其幾何意義掌握數(shù)乘運算及兩個向量共線的含義了解平面向量的基本定理掌握正交分解及坐標表示、會用坐標表示平面向量的加減及數(shù)乘運算
第16周
12.14~12.20 5 平面向量的基本定理及坐標表示,平面向量的數(shù)量積, 理解用坐標表示的平面向量共線的條件,理解平面向量數(shù)量積德含義及其物理意義,體會平面向量數(shù)量積與向量投影的關系,掌握數(shù)量積的坐標表達式,會進行平面,向量數(shù)量積的運算、求夾角、及垂直關系
第17周
12.21~12.27 5 平面向量應用舉例,
小結 用向量方法解決莫些簡單的平面幾何問題、力學問題與其他一些實際問題的過程,體會向量是一種幾何問題,物理問題的工具,發(fā)展運算能力和解決實際問題的能力
第18周
12.28~1.3 5 兩角和與差點正弦、余弦和正切公式 能以兩角差點余弦公式導出兩角和與差點正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它們的內(nèi)在聯(lián)系
第19周
1.4~1.10 5 簡單的三角恒等變換
期末復習
高一數(shù)學教學計劃14
一 設計思想:
函數(shù)與方程是中學數(shù)學的重要內(nèi)容,是銜接初等數(shù)學與高等數(shù)學的紐帶,再加上函數(shù)與方程還是中學數(shù)學四大數(shù)學思想之一,是具體事例與抽象思想相結合的體現(xiàn),在教學過程中,我采用了自主探究教學法。通過教學情境的設置,讓學生由特殊到一般,有熟悉到陌生,讓學生從現(xiàn)象中發(fā)現(xiàn)本質,以此激發(fā)學生的成就感,激發(fā)學生的學習興趣和學習熱情。在現(xiàn)實生活中函數(shù)與方程都有著十分重要的應用,因此函數(shù)與方程在整個高中數(shù)學教學中占有非常重要的地位。
二 教學內(nèi)容分析:
本節(jié)課是《普通高中課程標準》的新增內(nèi)容之一,選自《普通高中課程標準實驗教課書數(shù)學I必修本(A版)》第94—95頁的第三章第一課時3。1。1方程的根與函數(shù)的的零點。
本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個數(shù)的判斷建立一元二次方程的根與相應的二次函數(shù)的零點的聯(lián)系,然后由特殊到一般,將其推廣到一般方程與相應的函數(shù)的情形。它既揭示了初中一元二次方程與相應的二次函數(shù)的內(nèi)在聯(lián)系,也引出對函數(shù)知識的`總結拓展。之后將函數(shù)零點與方程的根的關系在利用二分法解方程中(3。1。2)加以應用,通過建立函數(shù)模型以及模型的求解(3。2)更全面地體現(xiàn)函數(shù)與方程的關系,逐步建立起函數(shù)與方程的聯(lián)系。滲透“方程與函數(shù)”思想。
總之,本節(jié)課滲透著重要的數(shù)學思想“特殊到一般的歸納思想”“方程與函數(shù)”和“數(shù)形結合”的思想,教好本節(jié)課可以為學好中學數(shù)學打下一個良好基礎,因此教好本節(jié)是至關重要的。
三 教學目標分析:
知識與技能:
1。結合方程根的幾何意義,理解函數(shù)零點的定義;
2。結合零點定義的探究,掌握方程的實根與其相應函數(shù)零點之間的等價關系;
3。結合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點個數(shù)和所在區(qū)間 的方法
情感、態(tài)度與價值觀:
1。讓學生體驗化歸與轉化、數(shù)形結合、函數(shù)與方程這三大數(shù)學思想在解決數(shù)學問題時的意義與價值;
2。培養(yǎng)學生鍥而不舍的探索精神和嚴密思考的良好學習習慣;
3。使學生感受學習、探索發(fā)現(xiàn)的樂趣與成功感
教學重點:函數(shù)零點與方程根之間的關系;連續(xù)函數(shù)在某區(qū)間上存在零點的判定方法。
教學難點:發(fā)現(xiàn)與理解方程的根與函數(shù)零點的關系;探究發(fā)現(xiàn)函數(shù)存在零點的方法。
四 教學準備
導學案,自主探究,合作學習,電子交互白板。
五 教學過程設計:略
六、探索研究(可根據(jù)時間和學生對知識的接受程度適當調(diào)整)
討論:請大家給方程的一個解的大約范圍,看誰找得范圍更?
[師生互動]
師:把學生分成小組共同探究,給學生足夠的自主學習時間,讓學生充分研究,發(fā)揮其主觀能動性。也可以讓各組把這幾個題做為小課題來研究,激發(fā)學生學習潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區(qū)間大小情況。
生:分組討論,各抒己見。在探究學習中得到數(shù)學能力的提高
第五階段設計意圖:
一是為用二分法求方程的近似解做準備
二是小組探究合作學習培養(yǎng)學生的創(chuàng)新能力和探究意識,本組探究題目就是為了培養(yǎng)學生的探究能力,此組題目具有較強的開放性,探究性,基本上可以達到上述目的。
七、課堂小結:
零點概念
零點存在性的判斷
零點存在性定理的應用注意點:零點個數(shù)判斷以及方程根所在區(qū)間
八、鞏固練習(略)
小編為大家提供的高一上學期數(shù)學教學計劃格式,大家仔細閱讀了嗎?最后祝同學們學習進步。
高一數(shù)學教學計劃15
(一)教學目標
1.知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.
(2)能使用Venn圖表示集合的并集和交集運算結果,體會直觀圖對理解抽象概念的作用。
(3)掌握的關的術語和符號,并會用它們正確進行集合的并集與交集運算。
2.過程與方法
通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質與內(nèi)涵,增強學生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識和能力.
3.情感、態(tài)度與價值觀
通過集合的并集與交集運算法則的發(fā)現(xiàn)、完善,增強學生運用數(shù)學知識和數(shù)學思想認識客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會數(shù)學的應用價值.
(二)教學重點與難點
重點:交集、并集運算的含義,識記與運用.
難點:弄清交集、并集的含義,認識符號之間的區(qū)別與聯(lián)系
(三)教學方法
在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結合.
(四)教學過程
教學環(huán)節(jié) 教學內(nèi)容 師生互動 設計意圖
提出問題引入新知 思考:觀察下列各組集合,聯(lián)想實數(shù)加法運算,探究集合能否進行類似“加法”運算.
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理數(shù)},
B = {x | x是無理數(shù)},
C = {x | x是實數(shù)}.
師:兩數(shù)存在大小關系,兩集合存在包含、相等關系;實數(shù)能進行加減運算,探究集合是否有相應運算.
生:集合A與B的元素合并構成C.
師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算. 生疑析疑,
導入新知
形成
概念
思考:并集運算.
集合C是由所有屬于集合A或屬于集合B的元素組成的,稱C為A和B的并集.
定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:
師:請同學們將上述兩組實例的共同規(guī)律用數(shù)學語言表達出來.
學生合作交流:歸納→回答→補充或修正→完善→得出并集的定義. 在老師指導下,學生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.
應用舉例 例1 設A = {4,5,6,8},B = {3,5,7,8},求A∪B.
例2 設集合A = {x | –1
例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:A∪B = {x |–1
師:求并集時,兩集合的相同元素如何在并集中表示.
生:遵循集合元素的互異性.
師:涉及不等式型集合問題.
注意利用數(shù)軸,運用數(shù)形結合思想求解.
生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間. 同時注意集合元素的互異性. 學生嘗試求解,老師適時適當指導,評析.
固化概念
提升能力
探究性質 ①A∪A = A, ②A∪ = A,
③A∪B = B∪A,
、 ∪B, ∪B.
老師要求學生對性質進行合理解釋. 培養(yǎng)學生數(shù)學思維能力.
形成概念 自學提要:
①由兩集合的所有元素合并可得兩集合的`并集,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算?
、诮患\算具有的運算性質呢?
交集的定義.
由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.
即A∩B = {x | x∈A且x∈B}
Venn圖表示
老師給出自學提要,學生在老師的引導下自我學習交集知識,自我體會交集運算的含義. 并總結交集的性質.
生:①A∩A = A;
②A∩ = ;
、跘∩B = B∩A;
、蹵∩ ,A∩ .
師:適當闡述上述性質.
自學輔導,合作交流,探究交集運算. 培養(yǎng)學生的自學能力,為終身發(fā)展培養(yǎng)基本素質.
應用舉例 例1 (1)A = {2,4,6,8,10},
B = {3,5,8,12},C = {8}.
(2)新華中學開運動會,設
A = {x | x是新華中學高一年級參加百米賽跑的同學},
B = {x | x是新華中學高一年級參加跳高比賽的同學},求A∩B.
例2 設平面內(nèi)直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關系. 學生上臺板演,老師點評、總結.
例1 解:(1)∵A∩B = {8},
∴A∩B = C.
(2)A∩B就是新華中學高一年級中那些既參加百米賽跑又參加跳高比賽的同學組成的集合. 所以,A∩B = {x | x是新華中學高一年級既參加百米賽跑又參加跳高比賽的同學}.
例2 解:平面內(nèi)直線l1,l2可能有三種位置關系,即相交于一點,平行或重合.
(1)直線l1,l2相交于一點P可表示為 L1∩L2 = {點P};
(2)直線l1,l2平行可表示為
L1∩L2 = ;
(3)直線l1,l2重合可表示為
L1∩L2 = L1 = L2. 提升學生的動手實踐能力.
歸納總結 并集:A∪B = {x | x∈A或x∈B}
交集:A∩B = {x | x∈A且x∈B}
性質:①A∩A = A,A∪A = A,
、贏∩ = ,A∪ = A,
、跘∩B = B∩A,A∪B = B∪A. 學生合作交流:回顧→反思→總理→小結
老師點評、闡述 歸納知識、構建知識網(wǎng)絡
課后作業(yè) 1.1第三課時 習案 學生獨立完成 鞏固知識,提升能力,反思升華
備選例題
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
當a = –3時,A = {–1,10,6},A不合要求,a = –3舍去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
當a = 1時,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1
(1)若A∩B = ,求a的取值范圍;
(2)若A∪B = {x | x<1},求a的取值范圍.
【解析】(1)如下圖所示:A = {x | –1
∴數(shù)軸上點x = a在x = – 1左側.
∴a≤–1.
(2)如右圖所示:A = {x | –1
∴數(shù)軸上點x = a在x = –1和x = 1之間.
∴–1
例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實數(shù)時,A∩B 與A∩C = 同時成立?
【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.
由A∩B 和A∩C = 同時成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.
當a = 5時,A = {x | x2 – 5x + 6 = 0} = {2,3},此時A∩C = {2},與題設A∩C = 相矛盾,故不適合.
當a = –2時,A = {x | x2 + 2x – 15 = 0} = {3,5},此時A∩B 與A∩C = ,同時成立,∴滿足條件的實數(shù)a = –2.
例4 設集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.
【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.
當x = 3時,A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.
當x = –3時,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.
當x = 5時,A = {25,9,– 4},B = {0,– 4,9},此時A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.
綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.
【高一數(shù)學教學計劃】相關文章:
數(shù)學高一教學計劃03-10
高一數(shù)學教學計劃11-02
高一數(shù)學教學計劃12-24
高一數(shù)學的教學計劃04-04
高一數(shù)學教學計劃05-29
高一數(shù)學教學教學計劃02-06
關于高一數(shù)學教學計劃01-29
高一數(shù)學的教學計劃通用10-12
高一數(shù)學教學計劃范本01-22
高一數(shù)學教學計劃優(yōu)秀10-26