国产真实乱子伦精品,国产精品100页,美女网站色免费,国产白嫩美女免费观看,欧美精品亚洲,欧美韩国xxx,欧美性猛交xxxxxxxx软件

考研數(shù)學(xué)證明題高手解決方案

時間:2023-04-28 02:45:35 考研數(shù)學(xué) 我要投稿
  • 相關(guān)推薦

考研數(shù)學(xué)證明題高手解決方案

縱觀近十年考研數(shù)學(xué)真題,可以看到:幾乎每一年的試題中都會有一個證明題,而且基本上都是應(yīng)用中值定理來解決的。但是要參加碩士入學(xué)數(shù)學(xué)統(tǒng)一考試的同學(xué)們在大學(xué)學(xué)習(xí)高等數(shù)學(xué)時,邏輯推理能力不足以達到考研數(shù)學(xué)的要求,這就導(dǎo)致考研數(shù)學(xué)考試中遇到證明推理題就會一籌莫展,這導(dǎo)致對于如此簡單的證明題得分率也極低。除了個別考研輔導(dǎo)書中有一些證明思路之外,大多數(shù)考研輔導(dǎo)書在這一方面沒有花太大力氣。在此給大家簡單介紹一些解決數(shù)學(xué)證明題的入手點,希望對有此隱患的同學(xué)有所幫助。

  證明題可以分三步走:

考研數(shù)學(xué)證明題高手解決方案

  第一步:結(jié)合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準(zhǔn)則等基本原理,包括條件及結(jié)論。了解基本原理是證明的基礎(chǔ),了解的程度不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準(zhǔn)則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。

  第二步:借助幾何意義尋求證明思路。一個證明題,大多時候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目中文字的含義。如2007年數(shù)學(xué)一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。

  第三步:逆推。從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。

  對于那些經(jīng)常使用如上方法的同學(xué)來說,利用三步走就能輕松收獲數(shù)學(xué)證明的分數(shù),但對于從心理上就不自信能解決證明題的同學(xué)來說,卻常常輕易丟失,后一部分同學(xué)請按“證明三步走”來建立自信心,以防止分數(shù)的白白流失。

www.shangyepx.com 中國大學(xué)網(wǎng)考研頻道

【考研數(shù)學(xué)證明題高手解決方案】相關(guān)文章:

考研數(shù)學(xué)心得12-28

高手中的高手作文11-18

幼兒大班數(shù)學(xué)《破譯高手》教案02-20

考研數(shù)學(xué)概率復(fù)習(xí)難點07-11

定積分證明題方法總結(jié)06-06

2023考研數(shù)學(xué)復(fù)習(xí)規(guī)則:高等數(shù)學(xué)03-20

考研數(shù)學(xué)心得體會12-28

數(shù)學(xué)考研心得體會12-27

考研經(jīng)驗:數(shù)學(xué)高分如何拿?04-21

考研數(shù)學(xué)復(fù)習(xí)需要恒心與耐心04-04