- 相關(guān)推薦
中學(xué)數(shù)學(xué)思想方法及其教學(xué)研究
1.?dāng)?shù)學(xué)思想方法教學(xué)的心理學(xué)意義
美國(guó)心理學(xué)家布魯納認(rèn)為,“不論我們選教什么學(xué)科,務(wù)必使學(xué)生理解該學(xué)科的基本結(jié)構(gòu).”所謂基本結(jié)構(gòu)就是指“基本的、統(tǒng)一的觀點(diǎn),或者是一般的、基本的原理.”“學(xué)習(xí)結(jié)構(gòu)就是學(xué)習(xí)事物是怎樣相互關(guān)聯(lián)的.”數(shù)學(xué)思想與方法為數(shù)學(xué)學(xué)科的一般原理的重要組成部分.下面從布魯納的基本結(jié)構(gòu)學(xué)說中來看數(shù)學(xué)思想、方法教學(xué)所具有的重要意義.
第一,“懂得基本原理使得學(xué)科更容易理解”.心理學(xué)認(rèn)為“由于認(rèn)知結(jié)構(gòu)中原有的有關(guān)觀念在包攝和概括水平上高于新學(xué)習(xí)的知識(shí),因而新知識(shí)與舊知識(shí)所構(gòu)成的這種類屬關(guān)系又可稱為下位關(guān)系,這種學(xué)習(xí)便稱為下位學(xué)習(xí).”當(dāng)學(xué)生掌握了一些數(shù)學(xué)思想、方法,再去學(xué)習(xí)相關(guān)的數(shù)學(xué)知識(shí),就屬于下位學(xué)習(xí)了.下位學(xué)習(xí)所學(xué)知識(shí)“具有足夠的穩(wěn)定性,有利于牢固地固定新學(xué)習(xí)的意義,”即使新知識(shí)能夠較順利地納入到學(xué)生已有的認(rèn)知結(jié)構(gòu)中去.學(xué)生學(xué)習(xí)了數(shù)學(xué)思想、方法就能夠更好地理解和掌握數(shù)學(xué)內(nèi)容.
第二,有利于記憶.布魯納認(rèn)為,“除非把一件件事情放進(jìn)構(gòu)造得好的模型里面,否則很快就會(huì)忘記.”“學(xué)習(xí)基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們?cè)谛枰臅r(shí)候得以把一件件事情重新構(gòu)思起來.高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個(gè)現(xiàn)象的工具.”由此可見,數(shù)學(xué)思想、方法作為數(shù)學(xué)學(xué)科的“一般原理”,在數(shù)學(xué)學(xué)習(xí)中是至關(guān)重要的.無怪乎有人認(rèn)為,對(duì)于中學(xué)生“不管他們將來從事什么業(yè)務(wù)工作,唯有深深地銘刻于頭腦中的數(shù)學(xué)的精神、數(shù)學(xué)的思維方法、研究方法,卻隨時(shí)隨地發(fā)生作用,使他們受益終生.”
第三,學(xué)習(xí)基本原理有利于“原理和態(tài)度的遷移”.布魯納認(rèn)為,“這種類型的遷移應(yīng)該是教育過程的核心——用基本的和一般的觀念來不斷擴(kuò)大和加深知識(shí).”曹才翰教授也認(rèn)為,“如果學(xué)生認(rèn)知結(jié)構(gòu)中具有較高抽象、概括水平的觀念,對(duì)于新學(xué)習(xí)是有利的,”“只有概括的、鞏固的和清晰的知識(shí)才能實(shí)現(xiàn)遷移.”美國(guó)心理學(xué)家賈德通過實(shí)驗(yàn)證明,“學(xué)習(xí)遷移的發(fā)生應(yīng)有一個(gè)先決條件,就是學(xué)生需先掌握原理,形成類比,才能遷移到具體的類似學(xué)習(xí)中.”學(xué)生學(xué)習(xí)數(shù)學(xué)思想、方法有利于實(shí)現(xiàn)學(xué)習(xí)遷移,特別是原理和態(tài)度的遷移,從而可以較快地提高學(xué)習(xí)質(zhì)量和數(shù)學(xué)能力.
第四,強(qiáng)調(diào)結(jié)構(gòu)和原理的學(xué)習(xí),“能夠縮挾高級(jí)’知識(shí)和‘初級(jí)’知識(shí)之間的間隙.”一般地講,初等數(shù)學(xué)與高等數(shù)學(xué)的界限還是比較清楚的,特別是中學(xué)數(shù)學(xué)的許多具體內(nèi)容在高等數(shù)學(xué)中不再出現(xiàn)了,有些術(shù)語(yǔ)如方程、函數(shù)等在高等數(shù)學(xué)中要賦予它們以新的涵義.而在高等數(shù)學(xué)中幾乎全部保留下來的只有中學(xué)數(shù)學(xué)思想和方法以及與其關(guān)系密切的內(nèi)容,如集合、對(duì)應(yīng)等.因此,數(shù)學(xué)思想、方法是聯(lián)結(jié)中學(xué)數(shù)學(xué)與高等數(shù)學(xué)的一條紅線.
2.中學(xué)數(shù)學(xué)教學(xué)內(nèi)容的層次
中學(xué)數(shù)學(xué)教學(xué)內(nèi)容從總體上可以分為兩個(gè)層次:一個(gè)稱為表層知識(shí),另一個(gè)稱為深層知識(shí).表層知識(shí)包括概念、性質(zhì)、法則、公式、公理、定理等數(shù)學(xué)的基本知識(shí)和基本技能,深層知識(shí)主要指數(shù)學(xué)思想和數(shù)學(xué)方法.
表層知識(shí)是深層知識(shí)的基礎(chǔ),是教學(xué)大綱中明確規(guī)定的,教材中明確給出的,以及具有較強(qiáng)操作
[1] [2] [3]
【中學(xué)數(shù)學(xué)思想方法及其教學(xué)研究】相關(guān)文章:
小學(xué)數(shù)學(xué)思想方法及其教學(xué)研究04-28
略論數(shù)學(xué)美的特征及其在中學(xué)數(shù)學(xué)教學(xué)中的作用04-29
“把世界組織為區(qū)域”的思想方法及其對(duì)地理教學(xué)的指向性要求04-30
中學(xué)數(shù)學(xué)課堂教學(xué)中的師生互動(dòng)失真現(xiàn)象及其對(duì)策探討04-30
初中數(shù)學(xué)思想方法教學(xué)淺議04-29
開展數(shù)學(xué)思想方法教學(xué)的探索04-29
中學(xué)數(shù)學(xué)教師的素質(zhì)結(jié)構(gòu)及其對(duì)高師數(shù)學(xué)教育改革的啟示04-30
數(shù)學(xué)思想方法滲透教學(xué)之我見04-30
教學(xué)研究論文12-13