国产真实乱子伦精品,国产精品100页,美女网站色免费,国产白嫩美女免费观看,欧美精品亚洲,欧美韩国xxx,欧美性猛交xxxxxxxx软件

高中數(shù)學(xué)教學(xué)設(shè)計

時間:2024-10-02 23:46:17 學(xué)人智庫 我要投稿

高中數(shù)學(xué)教學(xué)設(shè)計模板

  想要提升提高課堂教學(xué)效率,相關(guān)的高中數(shù)學(xué)教學(xué)設(shè)計是必要的準(zhǔn)備工作。以下是小編為大家精心整理的高中數(shù)學(xué)教學(xué)設(shè)計模板,歡迎大家閱讀。

高中數(shù)學(xué)教學(xué)設(shè)計模板

  高中數(shù)學(xué)教學(xué)設(shè)計模板【1】

  教學(xué)目標(biāo)

  1.明確等差數(shù)列的定義.

  2.掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題

  3.培養(yǎng)學(xué)生觀察、歸納能力.

  教學(xué)重點

  1. 等差數(shù)列的概念;

  2. 等差數(shù)列的通項公式

  教學(xué)難點

  等差數(shù)列“等差”特點的理解、把握和應(yīng)用

  教具準(zhǔn)備

  投影片1張

  教學(xué)過程

  (I)復(fù)習(xí)回顧

  師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數(shù)列的特點,下面看一些例子。(放投影片)

  (Ⅱ)講授新課

  師:看這些數(shù)列有什么共同的.特點?

  1,2,3,4,5,6; ①

  10,8,6,4,2,…; ②

  生:積極思考,找上述數(shù)列共同特點。

  對于數(shù)列①(1≤n≤6);(2≤n≤6)

  對于數(shù)列②-2n(n≥1)(n≥2)

  對于數(shù)列③(n≥1)(n≥2)

  共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。

  師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。

  一、定義:

  等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

  如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2, 。

  二、等差數(shù)列的通項公式

  師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列的首項是,公差是d,則據(jù)其定義可得:

  若將這n-1個等式相加,則可得:

  即:即:即:……

  由此可得:師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項和公差d,便可求得其通項。

  如數(shù)列①(1≤n≤6)

  數(shù)列②:(n≥1)

  數(shù)列③:(n≥1)

  由上述關(guān)系還可得:即:則:=如:三、例題講解

  例1:(1)求等差數(shù)列8,5,2…的第20項

  (2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

  解:(1)由n=20,得(2)由得數(shù)列通項公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。

  (Ⅲ)課堂練習(xí)

  生:(口答)課本P118練習(xí)3

  (書面練習(xí))課本P117練習(xí)1

  師:組織學(xué)生自評練習(xí)(同桌討論)

  (Ⅳ)課時小結(jié)

  師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。

  即(n≥2)

  ②等差數(shù)列通項公式 (n≥1)

  推導(dǎo)出公式:(V)課后作業(yè)

  一、課本P118習(xí)題3.2 1,2

  二、1.預(yù)習(xí)內(nèi)容:課本P116例2P117例4

  2.預(yù)習(xí)提綱:

 、偃绾螒(yīng)用等差數(shù)列的定義及通項公式解決一些相關(guān)問題?

 、诘炔顢(shù)列有哪些性質(zhì)?

  高中數(shù)學(xué)教學(xué)設(shè)計模板【2】

  學(xué)習(xí)目標(biāo)

  明確排列與組合的聯(lián)系與區(qū)別,能判斷一個問題是排列問題還是組合問題;能運用所學(xué)的排列組合知識,正確地解決的實際問題.

  學(xué)習(xí)過程

  一、學(xué)前準(zhǔn)備

  復(fù)習(xí):

  1.(課本P28A13)填空:

  (1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是 ;

  (2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是 ;

  (3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是 ;

  (4)集合A有個 元素,集合B有 個元素,從兩個集合中各取1個元素,不同方法的種數(shù)是 ;

  二、新課導(dǎo)學(xué)

  ◆探究新知(復(fù)習(xí)教材P14~P25,找出疑惑之處)

  問題1:判斷下列問題哪個是排列問題,哪個是組合問題:

  (1)從4個風(fēng)景點中選出2個安排游覽,有多少種不同的方法?

  (2)從4個風(fēng)景點中選出2個,并確定這2個風(fēng)景點的游覽順序,有多少種不同的方法?

  ◆應(yīng)用示例

  例1.從10個不同的文藝節(jié)目中選6個編成一個節(jié)目單,如果某女演員的獨唱節(jié)目一定不能排在第二個節(jié)目的位置上,則共有多少種不同的排法?

  例2.7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù).

  (1) 甲站在中間;

  (2)甲、乙必須相鄰;

  (3)甲在乙的左邊(但不一定相鄰);

  (4)甲、乙必須相鄰,且丙不能站在排頭和排尾;

  (5)甲、乙、丙相鄰;

  (6)甲、乙不相鄰;

  (7)甲、乙、丙兩兩不相鄰。

  ◆反饋練習(xí)

  1. (課本P40A4)某學(xué)生邀請10位同學(xué)中的6位參加一項活動,其中兩位同學(xué)要么都請,要么都不請,共有多少種邀請方法?

  2.5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列

  3.馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種.

  當(dāng)堂檢測

  1.某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目.如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為( )

  A.42 B.30 C.20 D.12

  2.(課本P40A7)書架上有4本不同的.數(shù)學(xué)書,5本不同的物理書,3本不同的化學(xué)書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?

  課后作業(yè)

  1.(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的數(shù),問:(1)能夠組成多少個六位奇數(shù)?(2)能夠組成多少個大于201345的正整數(shù)?

  2.(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過5道工序,問:(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?

[高中數(shù)學(xué)教學(xué)設(shè)計模板]

【高中數(shù)學(xué)教學(xué)設(shè)計】相關(guān)文章:

高中數(shù)學(xué)優(yōu)秀教學(xué)設(shè)計(通用10篇)06-03

高中數(shù)學(xué)四種命題教學(xué)設(shè)計08-27

高中數(shù)學(xué)教學(xué)總結(jié)范文07-07

高中數(shù)學(xué)教學(xué)反思總結(jié)08-30

小學(xué)《身邊的設(shè)計》教學(xué)設(shè)計07-19

教學(xué)工作計劃高中數(shù)學(xué)11-17

莫高窟教學(xué)設(shè)計07-26

gkh教學(xué)設(shè)計09-20

散步教學(xué)設(shè)計09-18

尊嚴(yán)教學(xué)設(shè)計09-23