国产真实乱子伦精品,国产精品100页,美女网站色免费,国产白嫩美女免费观看,欧美精品亚洲,欧美韩国xxx,欧美性猛交xxxxxxxx软件

余弦定理證明

時間:2023-04-29 18:13:06 證明范文 我要投稿

余弦定理證明

余弦定理證明

在任意△ABC中, 作AD⊥BC.

余弦定理證明

∠C對邊為c,∠B對邊為b,∠A對邊為a -->

BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

勾股定理可知:

AC=AD+DC

b=(sinB*c)+(a-cosB*c)

b=sinB*c+a+cosB*c-2ac*cosB

b=(sinB+cosB)*c-2ac*cosB+a

b=c+a-2ac*cosB

所以,cosB=(c+a-b)/2ac

2

如右圖,在ABC中,三內(nèi)角A、B、C所對的邊分別是a、b、c . 以A為原點(diǎn),AC所在的直線為x軸建立直角坐標(biāo)系,于是C點(diǎn)坐標(biāo)是(b,0),由三角函數(shù)的定義得B點(diǎn)坐標(biāo)是(ccosA,csinA) . ∴CB = (ccosA-b,csinA). 現(xiàn)將CB平移到起點(diǎn)為原點(diǎn)A,則AD = CB . 而 |AD| = |CB| = a ,∠DAC = π-∠BCA = π-C , 根據(jù)三角函數(shù)的定義知D點(diǎn)坐標(biāo)是 (acos(π-C),asin(π-C)) 即 D點(diǎn)坐標(biāo)是(-acosC,asinC), ∴ AD = (-acosC,asinC) 而 AD = CB ∴ (-acosC,asinC) = (ccosA-b,csinA) ∴ asinC = csinA …………① -acosC = ccosA-b ……② 由①得 asinA = csinC ,同理可證 asinA = bsinB , ∴ asinA = bsinB = csinC . 由②得 acosC = b-ccosA ,平方得: a2cos2C = b2-2bccosA + c2cos2A , 即 a2-a2sin2C = b2-2bccosA + c2-c2sin2A . 而由①可得 a2sin2C = c2sin2A ∴ a2 = b2 + c2-2bccosA . 同理可證 b2 = a2 + c2-2accosB , c2 = a2 + b2-2abcosC . 到此正弦定理和余弦定理證明完畢。3△ABC的三邊分別為a,b,c,邊BC,CA,AB上的中線分別為ma.mb,mc,應(yīng)用余弦定理證明:

mb=(1/2)[(√2(a^2+c^2)-b^2)]

mc=(1/2)[(√2(a^2+b^2)-c^2)]ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達(dá)式:

ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]

=(1/2)√(2b^2+2c^2-a^2)

同理可得:

mb=

mc=

4

ma=√(c^2+(a/2)^2-ac*cosB)

=(1/2)√(4c^2+a^2-4ac*cosB)

由b^2=a^2+c^2-2ac*cosB

得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達(dá)式:

ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]

=(1/2)√(2b^2+2c^2-a^2)

證畢。

【余弦定理證明】相關(guān)文章:

垂心余弦定理證明04-28

余弦定理的證明方法04-28

余弦定理教案04-25

余弦定理教案01-11

“余弦定理”教學(xué)設(shè)計05-01

《余弦定理》教學(xué)反思范文(精選10篇)07-10

凸n邊形(n≥5)余弦定理04-28

單位證明范文_證明05-15

離職證明離職證明01-22

小孩改名證明范文_證明05-23